Multi-scale Attentive Residual Dense Network for Single Image Rain Removal

计算机科学 残余物 特征(语言学) 比例(比率) 人工智能 块(置换群论) 卷积(计算机科学) 图像(数学) 平滑的 代表(政治) 利用 模式识别(心理学) 遥感 计算机视觉 人工神经网络 地质学 算法 地理 数学 地图学 语言学 哲学 法学 计算机安全 政治 政治学 几何学
作者
Xiang Chen,Yufeng Huang,Lei Xu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 286-300 被引量:7
标识
DOI:10.1007/978-3-030-69532-3_18
摘要

Single image deraining is an urgent yet challenging task since rain streaks severely degrade the image quality and hamper the practical application. The investigation on rain removal has thus been attracting, while the performances of existing deraining have limitations owing to over smoothing effect, poor generalization capability and rain intensity varies both in spatial locations and color channels. To address these issues, we proposed a Multi-scale Attentive Residual Dense Network called MARD-Net in end-to-end manner, to exactly extract the negative rain streaks from rainy images while precisely preserving the image details. The architecture of modified dense network can be used to exploit the rain streaks details representation through feature reuse and propagation. Further, the Multi-scale Attentive Residual Block (MARB) is involved in the dense network to guide the rain streaks feature extraction and representation capability. Since contextual information is very critical for deraining, MARB first uses different convolution kernels along with fusion to extract multi-scale rain features and employs feature attention module to identify rain streaks regions and color channels, as well as has the skip connections to aggregate features at multiple levels and accelerate convergence. The proposed method is extensively evaluated on several frequent-use synthetic and real-world datasets. The quantitative and qualitative results show that the designed framework performs better than the recent state-of-the-art deraining approaches on promoting the rain removal performance and preserving image details under various rain streaks cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
樊小胖完成签到,获得积分10
刚刚
2秒前
思源应助科研通管家采纳,获得10
2秒前
xn201120应助科研通管家采纳,获得30
2秒前
xuzj应助科研通管家采纳,获得30
2秒前
华仔应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
布丁完成签到,获得积分10
2秒前
nnc应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
susu发布了新的文献求助10
2秒前
火星上的灵竹完成签到,获得积分10
3秒前
4秒前
秦萍完成签到,获得积分10
5秒前
1351567822应助单纯的思松采纳,获得100
6秒前
6秒前
嗨嗨害完成签到,获得积分10
6秒前
理想完成签到,获得积分10
7秒前
风中小鸽子完成签到,获得积分10
9秒前
抹茶夏天完成签到,获得积分10
10秒前
健忘白应助嗨嗨害采纳,获得10
10秒前
清凉茶发布了新的文献求助10
11秒前
12秒前
小二郎应助吃口饭采纳,获得10
13秒前
荣和完成签到,获得积分10
13秒前
Pwrry完成签到,获得积分10
13秒前
悦耳傥完成签到 ,获得积分10
14秒前
15秒前
橙子完成签到,获得积分10
16秒前
ccyyll完成签到,获得积分10
16秒前
hhh123完成签到,获得积分10
18秒前
狼来了aas完成签到,获得积分10
18秒前
19秒前
张明玉发布了新的文献求助10
19秒前
XPX完成签到 ,获得积分10
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991130
求助须知:如何正确求助?哪些是违规求助? 3532402
关于积分的说明 11257305
捐赠科研通 3271360
什么是DOI,文献DOI怎么找? 1805404
邀请新用户注册赠送积分活动 882375
科研通“疑难数据库(出版商)”最低求助积分说明 809281