亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent Diagnostics for Ball Screw Fault Through Indirect Sensing Using Deep Domain Adaptation

试验台 滚珠丝杠 计算机科学 人工智能 加速度计 球(数学) 计算机视觉 实时计算 工程类 数学分析 数学 螺母 计算机网络 结构工程 操作系统
作者
Vibhor Pandhare,Xiang Li,Marcella Miller,Xiaodong Jia,Jay Lee
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-11 被引量:26
标识
DOI:10.1109/tim.2020.3043512
摘要

Intelligent data-driven fault diagnostics for rotating machinery is well established. However, ball screws pose a unique challenge of impractical sensor locations for long-term deployment due to their complex motion trajectory and sophisticated mechanical structure. To overcome this challenge, an indirect sensing method is proposed. While techniques are available for multiple transfer learning tasks, cross-sensor domain adaptation remains unexplored. Thus, a convolutional neural network-based domain adaptation method is proposed that minimizes the maximum mean discrepancy of high-level representations between domains and exploits novel parallel data to attain class-level alignment. Proposed method achieved a mean testing accuracy of 98.25% upon validation on 33 transfer tasks designed across five accelerometer locations on a ball screw testbed depicting nine health conditions through variations in preload levels and backlash. This convenience of transferability of the diagnostic model between sensor locations can go a long way in robust and reliable condition monitoring of critical assets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助马良采纳,获得10
3秒前
小米的稻田完成签到 ,获得积分10
8秒前
12秒前
马良发布了新的文献求助10
22秒前
Jasper应助专注的子骞采纳,获得10
54秒前
1分钟前
1分钟前
1分钟前
DPmmm发布了新的文献求助10
1分钟前
1分钟前
现实的俊驰完成签到 ,获得积分10
1分钟前
Akim应助Frank采纳,获得10
2分钟前
3分钟前
再给我来点抽象的应助Jim采纳,获得10
4分钟前
科研通AI5应助榆果子采纳,获得10
4分钟前
fufufu123完成签到 ,获得积分10
4分钟前
孙孙应助Jim采纳,获得30
5分钟前
充电宝应助EliotFang采纳,获得10
5分钟前
5分钟前
陈杰发布了新的文献求助10
5分钟前
kuoping完成签到,获得积分0
6分钟前
彭于晏应助科研通管家采纳,获得10
6分钟前
nickel完成签到,获得积分10
7分钟前
7分钟前
EliotFang发布了新的文献求助10
7分钟前
沉沉完成签到 ,获得积分0
7分钟前
7分钟前
8分钟前
Frank发布了新的文献求助10
8分钟前
oleskarabach发布了新的文献求助10
8分钟前
EliotFang完成签到,获得积分10
8分钟前
fsznc完成签到 ,获得积分0
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
oleskarabach发布了新的文献求助10
9分钟前
CipherSage应助科研通管家采纳,获得10
10分钟前
开心完成签到 ,获得积分10
10分钟前
10分钟前
顾矜应助zsc采纳,获得10
10分钟前
榆果子发布了新的文献求助10
10分钟前
榆果子完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582372
求助须知:如何正确求助?哪些是违规求助? 4000106
关于积分的说明 12382171
捐赠科研通 3675045
什么是DOI,文献DOI怎么找? 2025670
邀请新用户注册赠送积分活动 1059319
科研通“疑难数据库(出版商)”最低求助积分说明 945976