去湿
硫系化合物
光伏
原子层沉积
图层(电子)
材料科学
光电子学
氧化物
沉积(地质)
太阳能电池
钝化
纳米技术
薄膜
吸收(声学)
复合材料
光伏系统
冶金
古生物学
沉积物
生物
生态学
作者
Pascal Büttner,Florian Scheler,Craig A. Pointer,Dirk Döhler,Maïssa K. S. Barr,Aleksandra V. Koroleva,Dmitrii Pankin,R. Hatada,S. Flege,Alina Manshina,Elizabeth R. Young,Ignacio Mínguez‐Bacho,Julien Bachmann
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2019-12-10
卷期号:2 (12): 8747-8756
被引量:40
标识
DOI:10.1021/acsaem.9b01721
摘要
The combination of oxide and heavier chalcogenide layers in thin film photovoltaics suffers limitations associated with oxygen incorporation and sulfur deficiency in the chalcogenide layer or with a chemical incompatibility which results in dewetting issues and defect states at the interface. Here, we establish atomic layer deposition (ALD) as a tool to overcome these limitations. ALD allows one to obtain highly pure Sb2S3 light absorber layers, and we exploit this technique to generate an additional interfacial layer consisting of 1.5 nm ZnS. This ultrathin layer simultaneously resolves dewetting and passivates defect states at the interface. We demonstrate via transient absorption spectroscopy that interfacial electron recombination is one order of magnitude slower at the ZnS-engineered interface than hole recombination at the Sb2S3/P3HT interface. The comparison of solar cells with and without oxide incorporation in Sb2S3, with and without the ultrathin ZnS interlayer, and with systematically varied Sb2S3 thickness provides a complete picture of the physical processes at work in the devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI