Deep Reinforcement Learning Control for Aerobatic Maneuvering of Agile Fixed-Wing Aircraft

强化学习 控制器(灌溉) 计算机科学 飞行包线 固定翼 控制理论(社会学) 控制工程 航程(航空) 控制(管理) 人工智能 工程类 航空航天工程 空气动力学 农学 生物
作者
Shanelle G. Clarke,Inseok Hwang
出处
期刊:AIAA Scitech 2020 Forum 被引量:42
标识
DOI:10.2514/6.2020-0136
摘要

Autonomous aerobatic flight has been a challenging control problem for many years. This is because aerobatic flight requires such highly precise control while operating on the extreme edges of the flight envelope which most controllers are not able to handle. For pilots, this precise control has been learnt through many years of flight experience. The research in this paper significantly shortens this learning time by extending the state of the art work in Deep Reinforcement Learning to the realm of flight control. This paper presents a Normalized Advantage Function controller that, unlike traditional controller architectures, emulates stickto- surface control by utilizing a simple unified nonlinear control framework to command and coordinate full multi-actuator authority. Through trial-and-error simulated experiences, the controller is able to explore the full range of the nonlinear flight envelope and learn by itself, without human input, an aerobatic maneuver in little time on the order of hours. This controller utilizes the large multidimensional state and action spaces of the aircraft to optimize aerobatic performance and high degree autonomous flight skill. We are able to showthrough high-fidelity simulations that this controller is able to successfully learn and execute two different aerobatic maneuvers: Slow Roll and Knife Edge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CAIWEN完成签到,获得积分10
刚刚
刚刚
CJZOU完成签到,获得积分10
刚刚
orixero应助小太阳采纳,获得10
1秒前
1秒前
Jonathan完成签到,获得积分10
1秒前
dddd完成签到,获得积分10
1秒前
hsn完成签到,获得积分10
1秒前
sansronds完成签到,获得积分10
2秒前
Lze发布了新的文献求助20
2秒前
天涯发布了新的文献求助10
3秒前
奋斗的苹果完成签到,获得积分10
3秒前
大花花完成签到,获得积分10
3秒前
脑洞疼应助呆萌幼晴采纳,获得10
3秒前
3秒前
刘辞忧完成签到 ,获得积分10
3秒前
SATone完成签到,获得积分10
4秒前
4秒前
呼呼完成签到,获得积分10
4秒前
4秒前
Coarrb完成签到,获得积分10
4秒前
ylf发布了新的文献求助10
5秒前
胡小溪完成签到,获得积分10
5秒前
温暖的冬天完成签到,获得积分10
5秒前
从容雅柏完成签到,获得积分10
5秒前
JamesPei应助Lihuining采纳,获得10
5秒前
zy关注了科研通微信公众号
5秒前
大盘菜应助灯座采纳,获得10
6秒前
毅可爱完成签到,获得积分10
6秒前
充电宝应助灯座采纳,获得10
6秒前
无颜猪发布了新的文献求助10
6秒前
桐桐应助guochenggong采纳,获得10
7秒前
时冬冬应助虚心的静枫采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
怡然花卷完成签到,获得积分20
8秒前
老lili完成签到,获得积分10
8秒前
笑笑丶不爱笑完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017