生物吸附
核化学
水溶液
弗伦德利希方程
傅里叶变换红外光谱
化学
枯草芽孢杆菌
生物量(生态学)
化学工程
吸附
细菌
生物
吸附
有机化学
工程类
遗传学
农学
作者
Sri Lakshmi Ramya Krishna Kanamarlapudi,Sudhamani Muddada
出处
期刊:Polish Journal of Microbiology
[Polish Society of Microbiologists]
日期:2019-12-01
卷期号:68 (4): 549-558
被引量:23
标识
DOI:10.33073/pjm-2019-057
摘要
Various microbial biomasses have been employed as biosorbents. Bacterial biomass has added advantages because of easy in production at a low cost. The study investigated the biosorption of iron from aqueous solutions by Bacillus subtilis. An optimum biosorption capacity of 7.25 mg of the metal per gram of the biosorbent was obtained by the Inductive Coupled Plasma Optical Emission Spectroscopy (ICP-OES) under the experimental conditions of initial metal concentration of 100 mg/l, pH 4.5, and biomass dose of 1 g/l at 30°C for 24 hrs. The data showed the best fit with the Freundlich isotherm model while following pseudo-first-order kinetics. Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX) analysis confirmed iron biosorption as precipitates on the bacterial surface, and as a peak in the EDX spectrum. The functional hydroxyl, carboxyl, and amino groups that are involved in biosorption were revealed by the Fourier Transform Infrared spectroscopy (FTIR). The amorphous nature of the biosorbent for biosorption was indicated by the X-ray Diffraction (XRD) analysis. The biomass of B. subtilis exhibited a point zero charge (pHpzc) at 2.0.Various microbial biomasses have been employed as biosorbents. Bacterial biomass has added advantages because of easy in production at a low cost. The study investigated the biosorption of iron from aqueous solutions by Bacillus subtilis. An optimum biosorption capacity of 7.25 mg of the metal per gram of the biosorbent was obtained by the Inductive Coupled Plasma Optical Emission Spectroscopy (ICP-OES) under the experimental conditions of initial metal concentration of 100 mg/l, pH 4.5, and biomass dose of 1 g/l at 30°C for 24 hrs. The data showed the best fit with the Freundlich isotherm model while following pseudo-first-order kinetics. Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX) analysis confirmed iron biosorption as precipitates on the bacterial surface, and as a peak in the EDX spectrum. The functional hydroxyl, carboxyl, and amino groups that are involved in biosorption were revealed by the Fourier Transform Infrared spectroscopy (FTIR). The amorphous nature of the biosorbent for biosorption was indicated by the X-ray Diffraction (XRD) analysis. The biomass of B. subtilis exhibited a point zero charge (pHpzc) at 2.0.
科研通智能强力驱动
Strongly Powered by AbleSci AI