亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Patent Value Analysis Using Deep Learning Models—The Case of IoT Technology Mining for the Manufacturing Industry

商业化 估价(财务) 深度学习 数据科学 人工智能 计算机科学 技术预测 领域(数学分析) 价值(数学) 分析 业务 物联网 专利分析 知识管理 大数据 机器学习 数据挖掘 营销 计算机安全 财务 数学分析 数学
作者
Amy J.C. Trappey,Charles V. Trappey,Usharani Hareesh Govindarajan,John J. H. Sun
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 1334-1346 被引量:42
标识
DOI:10.1109/tem.2019.2957842
摘要

The R&D output and global commercialization of intellectual properties (IPs), especially patents filed in many countries, have increased dramatically over the past decade. The overwhelming growth in research and IP activities has led to a major challenge to understand and forecast technology development insights and trends. Evidence-based data analytics is essential for technology mining. The assessment of patent values is a critical aspect of technology mining, which remains a highly subjective task performed by domain experts. As businesses become globalized, subjectivity in underlying assessments of large volumes of patent documents leads to overpriced or undervalued IP sales or licensing that exposes stakeholders to legal and financial risks. Thus, the development of intelligent methods for patent valuation requires new research emphasis. This article applies a deep learning analytical method for automatic and intelligent patent value estimation. Principal component analysis (PCA) is used to identify significant patent value indicators from the given patent dataset. Then, deep neural networks (DNN) for value prediction are modeled and trained using the training set. A detailed case study of 6466 manufacturing Internet of Things (IoT) patents is analyzed to demonstrate the improved results of building PCA-preprocessed DNN models to perform patent valuations. Finally, selected higher value IoT patents owned by leading Taiwan assignees are identified and analyzed to verify the technological competitive intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到,获得积分10
10秒前
小二郎应助科研通管家采纳,获得50
23秒前
馆长应助科研通管家采纳,获得30
23秒前
35秒前
Harrison发布了新的文献求助10
40秒前
充电宝应助Harrison采纳,获得30
50秒前
51秒前
Gemh发布了新的文献求助30
54秒前
1分钟前
LWT发布了新的文献求助10
1分钟前
闫伊森完成签到,获得积分10
1分钟前
Yini完成签到,获得积分0
1分钟前
Ashao完成签到 ,获得积分10
1分钟前
1分钟前
斯文败类应助Gemh采纳,获得10
1分钟前
周冯雪完成签到 ,获得积分10
1分钟前
1分钟前
LWT完成签到,获得积分10
2分钟前
Gemh发布了新的文献求助10
2分钟前
mathmotive完成签到,获得积分10
2分钟前
souther完成签到,获得积分0
2分钟前
2分钟前
哈哈哈哈完成签到,获得积分10
2分钟前
高贵的冰旋完成签到 ,获得积分10
2分钟前
SiriWang77完成签到,获得积分10
3分钟前
SiriWang77发布了新的文献求助10
3分钟前
hugo完成签到,获得积分20
4分钟前
幸运的姜姜完成签到 ,获得积分10
4分钟前
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
4分钟前
夏花般灿烂完成签到,获得积分10
4分钟前
科研通AI6应助xiaxia采纳,获得10
4分钟前
6分钟前
xiaxia发布了新的文献求助10
6分钟前
馆长应助科研通管家采纳,获得10
6分钟前
馆长应助科研通管家采纳,获得10
6分钟前
无花果应助xiaxia采纳,获得10
6分钟前
7分钟前
Harrison发布了新的文献求助30
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910068
求助须知:如何正确求助?哪些是违规求助? 4186087
关于积分的说明 12999029
捐赠科研通 3953339
什么是DOI,文献DOI怎么找? 2167876
邀请新用户注册赠送积分活动 1186328
关于科研通互助平台的介绍 1093381