材料科学
纳米复合材料
介电常数
电介质
烧结
陶瓷
制作
相对介电常数
复合材料
聚合物
居里温度
纳米颗粒
钛酸钡
复合数
纳米技术
凝聚态物理
光电子学
病理
物理
铁磁性
替代医学
医学
作者
Takao Sada,Kosuke Tsuji,Arnaud Ndayishimiye,Zhongming Fan,Yoshihiro Fujioka,Clive A. Randall
标识
DOI:10.1016/j.jeurceramsoc.2020.07.070
摘要
Cold sintering process (CSP) offers a promising strategy for the fabrication of innovative and advanced high permittivity dielectric nanocomposite materials. Here, we introduce Ba(OH)2∙8H2O hydrated flux as a new transient chemistry that enables the densification of BaTiO3 in a single step at a temperature as low as 150 °C. This remarkably low temperature is near its Curie transition of 125 °C, associated with a displacive phase transition. The cold sintered BaTiO3 shows a relative density of 95 % and a room temperature relative permittivity over 1000. This new hydrated flux permits the fabrication of a unique dense BaTiO3-polymer nanocomposite with a high volume fraction of ceramics ((1-x) BaTiO3 – x PTFE, with x = 0.05). The composite exhibits a relative permittivity of approximately 800, at least an order of magnitude higher than previous reports on polymer composites with BaTiO3 nanoparticle fillers that are typically well below 100. Unique high permittivity dielectric nanocomposites with enhanced resistivities can now be designed using polymers to engineer grain boundaries and CSP as a processing method opening up new possibilities in dielectric materials design.
科研通智能强力驱动
Strongly Powered by AbleSci AI