Genetic Programming With a New Representation to Automatically Learn Features and Evolve Ensembles for Image Classification

计算机科学 人工智能 模式识别(心理学) 遗传程序设计 上下文图像分类 集成学习 集合(抽象数据类型) 机器学习 代表(政治) 图像(数学) 像素 过程(计算) 操作系统 政治 程序设计语言 法学 政治学
作者
Ying Bi,Bing Xue,Mengjie Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (4): 1769-1783 被引量:33
标识
DOI:10.1109/tcyb.2020.2964566
摘要

Image classification is a popular task in machine learning and computer vision, but it is very challenging due to high variation crossing images. Using ensemble methods for solving image classification can achieve higher classification performance than using a single classification algorithm. However, to obtain a good ensemble, the component (base) classifiers in an ensemble should be accurate and diverse. To solve image classification effectively, feature extraction is necessary to transform raw pixels into high-level informative features. However, this process often requires domain knowledge. This article proposes an evolutionary approach based on genetic programming to automatically and simultaneously learn informative features and evolve effective ensembles for image classification. The new approach takes raw images as inputs and returns predictions of class labels based on the evolved classifiers. To achieve this, a new individual representation, a new function set, and a new terminal set are developed to allow the new approach to effectively find the best solution. More important, the solutions of the new approach can extract informative features from raw images and can automatically address the diversity issue of the ensembles. In addition, the new approach can automatically select and optimize the parameters for the classification algorithms in the ensemble. The performance of the new approach is examined on 13 different image classification datasets of varying difficulty and compared with a large number of effective methods. The results show that the new approach achieves better classification accuracy on most datasets than the competitive methods. Further analysis demonstrates that the new approach can evolve solutions with high accuracy and diversity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十三完成签到,获得积分20
刚刚
2秒前
nykxo发布了新的文献求助30
3秒前
aixiaoming0503完成签到,获得积分10
3秒前
5秒前
森气发布了新的文献求助10
6秒前
良辰应助gejingshu采纳,获得10
7秒前
科目三应助PANYS采纳,获得10
8秒前
AlienU完成签到,获得积分10
9秒前
9秒前
坚强的紫菜完成签到,获得积分10
10秒前
zzzkyt发布了新的文献求助10
10秒前
森气完成签到,获得积分10
10秒前
11秒前
小星完成签到,获得积分10
13秒前
13秒前
13秒前
lvsehx发布了新的文献求助10
13秒前
枕泉漱石完成签到 ,获得积分10
13秒前
开心的瘦子完成签到,获得积分10
14秒前
云川发布了新的文献求助10
14秒前
14秒前
14秒前
卢荣秀完成签到,获得积分10
17秒前
帽帽完成签到 ,获得积分10
19秒前
19秒前
20秒前
21秒前
nykxo完成签到,获得积分20
21秒前
汉堡包应助wanggongxiu采纳,获得10
22秒前
fillippo99应助77采纳,获得10
24秒前
Hello应助鳗鱼凡波采纳,获得10
24秒前
25秒前
yyy发布了新的文献求助10
26秒前
摆烂废物关注了科研通微信公众号
27秒前
29秒前
PANYS发布了新的文献求助10
30秒前
CodeCraft应助悦宝123456采纳,获得10
32秒前
hanyang965发布了新的文献求助10
32秒前
midrain发布了新的文献求助20
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310354
求助须知:如何正确求助?哪些是违规求助? 2943290
关于积分的说明 8513642
捐赠科研通 2618527
什么是DOI,文献DOI怎么找? 1431125
科研通“疑难数据库(出版商)”最低求助积分说明 664383
邀请新用户注册赠送积分活动 649580