生物
甲基化
表观遗传学
内科学
内分泌学
DNA甲基化
性二态性
发起人
基因
基因表达
遗传学
医学
作者
Belén Brie,Ana María Ornstein,María Cecilia Ramírez,I.M. Lacau-Mengido,Damasia Becú-Villalobos
摘要
Many sex differences in liver gene expression originate in the brain, depend on GH secretion and may underlie sex disparities in hepatic disease. Because epigenetic mechanisms may contribute, we studied promoter methylation and microRNA abundance in the liver, associated with expression of sexual dimorphic genes in mice with selective disruption of the dopamine D2 receptor in neurons (neuroDrd2KO), which decreases hypothalamic Ghrh , pituitary GH, and serum IGFI and in neonatally androgenized female mice which have increased pituitary GH content and serum IGFI. We evaluated mRNA levels of the female predominant genes prolactin receptor ( Prlr ), alcohol dehydrogenase 1 ( Adh1 ), Cyp2a4 , and hepatocyte nuclear transcription factor 6 ( Hnf6 ) and the male predominant gene, Cyp7b1 . Female predominant genes had higher mRNA levels compared to males, but lower methylation was only detected in the Prlr and Cyp2a4 female promoters. In neuroDrd2KO mice, sexual dimorphism was lost for all genes; the upregulation (feminization) of Prlr and Cyp2a4 in males correlated with decreased methylation of their promoters, and the downregulation (masculinization) of Hnf-6 mRNA in females correlated inversely with its promoter methylation. Neonatal androgenization of females evoked a loss of sexual dimorphism only for the female predominant Hnf6 and Adh1 genes, but no differences in promoter methylation were found. Finally, mmu-miR-155-5p, predicted to target Cyp7b1 expression, was lower in males in association with higher Cyp7b1 mRNA levels compared to females and was not modified in neuroDrd2KO or TP mice. Our results suggest specific regulation of gene sexually dimorphic expression in the liver by methylation or miRNAs.
科研通智能强力驱动
Strongly Powered by AbleSci AI