运动规划
随机性
随机树
路径(计算)
计算机科学
移动机器人
树(集合论)
任意角度路径规划
节点(物理)
算法
师(数学)
机器人
数学优化
人工智能
数学
工程类
计算机网络
结构工程
算术
统计
数学分析
标识
DOI:10.1109/iucc/dsci/smartcns.2019.00117
摘要
A path planning algorithm is proposed for the problems of high node randomness and repeatability using the Rapidly-exploring Random Tree (RRT) algorithm in the path planning. Firstly, the method of region division centered on newly generated nodes is proposed to reduce randomness, the generation rules of temporary target nodes are guided to reduce repetitiveness, then improve the efficiency of path planning through adaptive step size strategy, smooth the planned path to improve the length of the path in the end. Simulation results show that the improved RRT algorithm can effectively plan the path for mobile robots.
科研通智能强力驱动
Strongly Powered by AbleSci AI