Understanding Deep Learning Techniques for Image Segmentation

计算机科学 深度学习 人工智能 分割 卷积神经网络 图像分割 基于分割的对象分类 领域(数学分析) 机器学习 目标检测 透视图(图形) 图像(数学) 深层神经网络 人工神经网络 模式识别(心理学) 尺度空间分割 计算机视觉 数学分析 数学
作者
Swarnendu Ghosh,Nibaran Das,Ishita Das,Ujjwal Maulik
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:52 (4): 1-35 被引量:311
标识
DOI:10.1145/3329784
摘要

The machine learning community has been overwhelmed by a plethora of deep learning--based approaches. Many challenging computer vision tasks, such as detection, localization, recognition, and segmentation of objects in an unconstrained environment, are being efficiently addressed by various types of deep neural networks, such as convolutional neural networks, recurrent networks, adversarial networks, and autoencoders. Although there have been plenty of analytical studies regarding the object detection or recognition domain, many new deep learning techniques have surfaced with respect to image segmentation techniques. This article approaches these various deep learning techniques of image segmentation from an analytical perspective. The main goal of this work is to provide an intuitive understanding of the major techniques that have made a significant contribution to the image segmentation domain. Starting from some of the traditional image segmentation approaches, the article progresses by describing the effect that deep learning has had on the image segmentation domain. Thereafter, most of the major segmentation algorithms have been logically categorized with paragraphs dedicated to their unique contribution. With an ample amount of intuitive explanations, the reader is expected to have an improved ability to visualize the internal dynamics of these processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
钙离子发布了新的文献求助10
刚刚
bkagyin应助Zu采纳,获得10
2秒前
lk完成签到,获得积分20
2秒前
炒鸡小将发布了新的文献求助10
3秒前
马路完成签到 ,获得积分10
4秒前
再慕完成签到,获得积分10
5秒前
guangshuang发布了新的文献求助10
5秒前
眯眯眼的衬衫应助小淘气采纳,获得10
9秒前
JamesPei应助aaaaa采纳,获得10
10秒前
CAOHOU举报细心小鸭子求助涉嫌违规
12秒前
Merlin应助Zack采纳,获得30
13秒前
奋斗向南完成签到,获得积分10
13秒前
雪碧发布了新的文献求助20
13秒前
Hello应助坚强的赛凤采纳,获得10
13秒前
志轩应助李锐采纳,获得10
14秒前
酷炫鑫完成签到,获得积分10
15秒前
16秒前
小比熊完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
19秒前
20秒前
Rondab应助科研通管家采纳,获得10
20秒前
20秒前
Rondab应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
科目三应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
21秒前
走四方应助科研通管家采纳,获得20
21秒前
21秒前
科目三应助科研通管家采纳,获得10
21秒前
潇洒应助科研通管家采纳,获得10
21秒前
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959141
求助须知:如何正确求助?哪些是违规求助? 3505468
关于积分的说明 11123941
捐赠科研通 3237159
什么是DOI,文献DOI怎么找? 1788988
邀请新用户注册赠送积分活动 871478
科研通“疑难数据库(出版商)”最低求助积分说明 802824