计算机科学
深度学习
人工智能
分割
卷积神经网络
图像分割
基于分割的对象分类
领域(数学分析)
机器学习
目标检测
透视图(图形)
图像(数学)
深层神经网络
人工神经网络
模式识别(心理学)
尺度空间分割
计算机视觉
数学
数学分析
作者
Swarnendu Ghosh,Nibaran Das,Ishita Das,Ujjwal Maulik
摘要
The machine learning community has been overwhelmed by a plethora of deep learning--based approaches. Many challenging computer vision tasks, such as detection, localization, recognition, and segmentation of objects in an unconstrained environment, are being efficiently addressed by various types of deep neural networks, such as convolutional neural networks, recurrent networks, adversarial networks, and autoencoders. Although there have been plenty of analytical studies regarding the object detection or recognition domain, many new deep learning techniques have surfaced with respect to image segmentation techniques. This article approaches these various deep learning techniques of image segmentation from an analytical perspective. The main goal of this work is to provide an intuitive understanding of the major techniques that have made a significant contribution to the image segmentation domain. Starting from some of the traditional image segmentation approaches, the article progresses by describing the effect that deep learning has had on the image segmentation domain. Thereafter, most of the major segmentation algorithms have been logically categorized with paragraphs dedicated to their unique contribution. With an ample amount of intuitive explanations, the reader is expected to have an improved ability to visualize the internal dynamics of these processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI