Understanding Deep Learning Techniques for Image Segmentation

计算机科学 深度学习 人工智能 分割 卷积神经网络 图像分割 基于分割的对象分类 领域(数学分析) 机器学习 目标检测 透视图(图形) 图像(数学) 人工神经网络 模式识别(心理学) 尺度空间分割 计算机视觉 数学 数学分析
作者
Swarnendu Ghosh,Nibaran Das,Ishita Das,Ujjwal Maulik
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:52 (4): 1-35 被引量:384
标识
DOI:10.1145/3329784
摘要

The machine learning community has been overwhelmed by a plethora of deep learning--based approaches. Many challenging computer vision tasks, such as detection, localization, recognition, and segmentation of objects in an unconstrained environment, are being efficiently addressed by various types of deep neural networks, such as convolutional neural networks, recurrent networks, adversarial networks, and autoencoders. Although there have been plenty of analytical studies regarding the object detection or recognition domain, many new deep learning techniques have surfaced with respect to image segmentation techniques. This article approaches these various deep learning techniques of image segmentation from an analytical perspective. The main goal of this work is to provide an intuitive understanding of the major techniques that have made a significant contribution to the image segmentation domain. Starting from some of the traditional image segmentation approaches, the article progresses by describing the effect that deep learning has had on the image segmentation domain. Thereafter, most of the major segmentation algorithms have been logically categorized with paragraphs dedicated to their unique contribution. With an ample amount of intuitive explanations, the reader is expected to have an improved ability to visualize the internal dynamics of these processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿猫完成签到,获得积分10
刚刚
汉堡包应助LTT采纳,获得10
1秒前
小宅女完成签到 ,获得积分10
1秒前
天天快乐应助joey106采纳,获得10
3秒前
蔡继海发布了新的文献求助10
3秒前
z7777777完成签到,获得积分10
3秒前
4秒前
打打应助辛勤的管道工采纳,获得10
4秒前
zy发布了新的文献求助10
5秒前
黑白菜完成签到,获得积分10
5秒前
远辰完成签到,获得积分10
9秒前
Akim应助TAO采纳,获得10
9秒前
10秒前
细腻灯泡发布了新的文献求助10
10秒前
11秒前
隐形元绿完成签到,获得积分10
11秒前
小白白完成签到 ,获得积分10
11秒前
天天快乐应助kyt666采纳,获得10
12秒前
深情安青应助小鹏采纳,获得10
12秒前
chall应助玛琪玛小姐的狗采纳,获得10
13秒前
隐形元绿发布了新的文献求助10
14秒前
16秒前
17秒前
17秒前
活力奇异果完成签到,获得积分10
17秒前
云竹丶完成签到,获得积分10
18秒前
20秒前
20秒前
chall应助玛琪玛小姐的狗采纳,获得10
21秒前
兔子发布了新的文献求助10
22秒前
涂涂虫发布了新的文献求助10
22秒前
22秒前
22秒前
浮游应助gs采纳,获得10
24秒前
joey106发布了新的文献求助10
25秒前
26秒前
朱宸发布了新的文献求助10
26秒前
小通通完成签到 ,获得积分10
27秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565868
求助须知:如何正确求助?哪些是违规求助? 4650808
关于积分的说明 14693385
捐赠科研通 4592912
什么是DOI,文献DOI怎么找? 2519798
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463329