亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Radiological Report Generation For Chest X-Rays With Weakly-Supervised End-to-End Deep Learning

放射性武器 深度学习 卷积神经网络 胸部疾病 人工智能 端到端原则 计算机科学 医学 放射科 机器学习 模式识别(心理学)
作者
Shuai Zhang,Xiaoyan Xin,Yang Wang,Yachong Guo,Qiuqiao Hao,Xianfeng Yang,Jun Wang,Jian Zhang,Bing Zhang,Wei Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2006.10347
摘要

The chest X-Ray (CXR) is the one of the most common clinical exam used to diagnose thoracic diseases and abnormalities. The volume of CXR scans generated daily in hospitals is huge. Therefore, an automated diagnosis system able to save the effort of doctors is of great value. At present, the applications of artificial intelligence in CXR diagnosis usually use pattern recognition to classify the scans. However, such methods rely on labeled databases, which are costly and usually have large error rates. In this work, we built a database containing more than 12,000 CXR scans and radiological reports, and developed a model based on deep convolutional neural network and recurrent network with attention mechanism. The model learns features from the CXR scans and the associated raw radiological reports directly; no additional labeling of the scans are needed. The model provides automated recognition of given scans and generation of reports. The quality of the generated reports was evaluated with both the CIDEr scores and by radiologists as well. The CIDEr scores are found to be around 5.8 on average for the testing dataset. Further blind evaluation suggested a comparable performance against human radiologist.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助七月采纳,获得10
2秒前
kky完成签到 ,获得积分10
6秒前
奈思完成签到 ,获得积分10
7秒前
8秒前
22秒前
38秒前
在水一方应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Jasper应助CC采纳,获得10
2分钟前
Zhaoyli发布了新的文献求助10
2分钟前
2分钟前
萝卜猪完成签到,获得积分10
2分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
会会完成签到 ,获得积分20
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
yys10l完成签到,获得积分10
4分钟前
yys完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
QCB完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
NexusExplorer应助契合采纳,获得10
5分钟前
6分钟前
契合发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413316
求助须知:如何正确求助?哪些是违规求助? 4530416
关于积分的说明 14122927
捐赠科研通 4445494
什么是DOI,文献DOI怎么找? 2439208
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408756