亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid approach to estimating long-term and short-term exposure levels of ozone at the national scale in China using land use regression and Bayesian maximum entropy.

计量经济学 贝叶斯概率 空气污染 协变量 计算机科学
作者
Li Chen,Shuang Liang,Xiaoli Li,Jian Mao,Shuang Gao,Hui Zhang,Yanling Sun,Sverre Vedal,Zhipeng Bai,Zhenxing Ma,Haiyu,Merched Azzi
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:752: 141780- 被引量:3
标识
DOI:10.1016/j.scitotenv.2020.141780
摘要

Abstract Because ambient ozone (O3) has fine spatial scale variability in addition to a large scale regional distribution, accurate exposure predictions for population health studies need to also capture fine spatial scale differences in exposure. To address these needs, we developed a 3-year average land use regression (LUR) and combined LUR and Bayesian maximum entropy (BME) by incorporating a national area variability LUR model for China from 2015 to 2017 along with data that take into account incompleteness of O3 monitoring data into a BME framework. Spatio-temporal kriging models that either included or did not include “soft” data were used for comparison. The final LUR model included five predictor variables: road length within a 1000 m buffer, temperature, wind speed, industrial land area within a 3000 m buffer and altitude. The 1-year predicted O3 concentrations based on the ratio method moderately agreed with the measured concentration, and the regression R2 values were 0.53, 0.57 and 0.59 in the year of 2015, 2016 and 2017, respectively. The LUR/BME model performed better (R2 = 0.80, root mean squared error [RMSE] = 23.5 μg/m3) than the ordinary spatio-temporal kriging model that either included “soft” data (R2 = 0.57, RMSE = 49.2 μg/m3) or did not include the “soft” data (R2 = 0.52, RMSE = 58.5 μg/m3). We have demonstrated that a hybrid LUR/BME model can provide accurate predictions of O3 concentrations with high spatio-temporal resolution at the national scale in mainland China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gexzygg应助科研通管家采纳,获得10
23秒前
gexzygg应助科研通管家采纳,获得10
23秒前
帮帮忙大佬x_x呜呜完成签到,获得积分10
32秒前
1分钟前
wangfaqing942完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
WhiteCaramel完成签到 ,获得积分10
1分钟前
sunfield2014发布了新的文献求助10
1分钟前
2分钟前
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
liuliuliu发布了新的文献求助10
2分钟前
浮游应助liuliuliu采纳,获得10
2分钟前
2分钟前
power完成签到,获得积分10
3分钟前
3分钟前
at发布了新的文献求助10
3分钟前
万能图书馆应助at采纳,获得10
3分钟前
Pattis完成签到 ,获得积分10
4分钟前
4分钟前
阿俊发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
情怀应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得30
4分钟前
乐乐应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
慕青应助王波波早睡晚起采纳,获得10
4分钟前
4分钟前
土豪的灵竹完成签到 ,获得积分10
4分钟前
5分钟前
贺六浑发布了新的文献求助20
5分钟前
午盏完成签到 ,获得积分10
5分钟前
gexzygg应助科研通管家采纳,获得20
6分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561486
求助须知:如何正确求助?哪些是违规求助? 4646588
关于积分的说明 14678693
捐赠科研通 4587873
什么是DOI,文献DOI怎么找? 2517244
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461520