A hybrid approach to estimating long-term and short-term exposure levels of ozone at the national scale in China using land use regression and Bayesian maximum entropy.

计量经济学 贝叶斯概率 空气污染 协变量 计算机科学
作者
Li Chen,Shuang Liang,Xiaoli Li,Jian Mao,Shuang Gao,Hui Zhang,Yanling Sun,Sverre Vedal,Zhipeng Bai,Zhenxing Ma,Haiyu,Merched Azzi
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:752: 141780- 被引量:3
标识
DOI:10.1016/j.scitotenv.2020.141780
摘要

Abstract Because ambient ozone (O3) has fine spatial scale variability in addition to a large scale regional distribution, accurate exposure predictions for population health studies need to also capture fine spatial scale differences in exposure. To address these needs, we developed a 3-year average land use regression (LUR) and combined LUR and Bayesian maximum entropy (BME) by incorporating a national area variability LUR model for China from 2015 to 2017 along with data that take into account incompleteness of O3 monitoring data into a BME framework. Spatio-temporal kriging models that either included or did not include “soft” data were used for comparison. The final LUR model included five predictor variables: road length within a 1000 m buffer, temperature, wind speed, industrial land area within a 3000 m buffer and altitude. The 1-year predicted O3 concentrations based on the ratio method moderately agreed with the measured concentration, and the regression R2 values were 0.53, 0.57 and 0.59 in the year of 2015, 2016 and 2017, respectively. The LUR/BME model performed better (R2 = 0.80, root mean squared error [RMSE] = 23.5 μg/m3) than the ordinary spatio-temporal kriging model that either included “soft” data (R2 = 0.57, RMSE = 49.2 μg/m3) or did not include the “soft” data (R2 = 0.52, RMSE = 58.5 μg/m3). We have demonstrated that a hybrid LUR/BME model can provide accurate predictions of O3 concentrations with high spatio-temporal resolution at the national scale in mainland China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实人完成签到,获得积分10
刚刚
jayus发布了新的文献求助50
1秒前
Pan发布了新的文献求助10
2秒前
2秒前
wangyb完成签到,获得积分10
2秒前
2秒前
小米发布了新的文献求助10
2秒前
情怀应助Kry4taloL采纳,获得10
2秒前
3秒前
4秒前
4秒前
YUYUYU应助玩命的元槐采纳,获得10
4秒前
困敦发布了新的文献求助10
6秒前
chenman9397发布了新的文献求助10
6秒前
渡星河完成签到,获得积分10
6秒前
cm发布了新的文献求助10
8秒前
8秒前
苏苏发布了新的文献求助10
9秒前
10秒前
紫腚能行完成签到,获得积分10
10秒前
77完成签到 ,获得积分10
11秒前
加菲丰丰应助yyy采纳,获得10
11秒前
溪愔完成签到 ,获得积分10
11秒前
HJY完成签到,获得积分10
11秒前
13秒前
13秒前
ShowMaker应助老实人采纳,获得30
13秒前
丘比特应助球球采纳,获得10
13秒前
14秒前
14秒前
Raunio发布了新的文献求助10
15秒前
16秒前
zfczfc发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
259185发布了新的文献求助10
21秒前
成硕发布了新的文献求助10
21秒前
慕青应助科研通管家采纳,获得10
22秒前
加菲丰丰应助科研通管家采纳,获得10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149396
求助须知:如何正确求助?哪些是违规求助? 2800463
关于积分的说明 7840190
捐赠科研通 2458038
什么是DOI,文献DOI怎么找? 1308223
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706