亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid approach to estimating long-term and short-term exposure levels of ozone at the national scale in China using land use regression and Bayesian maximum entropy.

计量经济学 贝叶斯概率 空气污染 协变量 计算机科学
作者
Li Chen,Shuang Liang,Xiaoli Li,Jian Mao,Shuang Gao,Hui Zhang,Yanling Sun,Sverre Vedal,Zhipeng Bai,Zhenxing Ma,Haiyu,Merched Azzi
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:752: 141780- 被引量:3
标识
DOI:10.1016/j.scitotenv.2020.141780
摘要

Abstract Because ambient ozone (O3) has fine spatial scale variability in addition to a large scale regional distribution, accurate exposure predictions for population health studies need to also capture fine spatial scale differences in exposure. To address these needs, we developed a 3-year average land use regression (LUR) and combined LUR and Bayesian maximum entropy (BME) by incorporating a national area variability LUR model for China from 2015 to 2017 along with data that take into account incompleteness of O3 monitoring data into a BME framework. Spatio-temporal kriging models that either included or did not include “soft” data were used for comparison. The final LUR model included five predictor variables: road length within a 1000 m buffer, temperature, wind speed, industrial land area within a 3000 m buffer and altitude. The 1-year predicted O3 concentrations based on the ratio method moderately agreed with the measured concentration, and the regression R2 values were 0.53, 0.57 and 0.59 in the year of 2015, 2016 and 2017, respectively. The LUR/BME model performed better (R2 = 0.80, root mean squared error [RMSE] = 23.5 μg/m3) than the ordinary spatio-temporal kriging model that either included “soft” data (R2 = 0.57, RMSE = 49.2 μg/m3) or did not include the “soft” data (R2 = 0.52, RMSE = 58.5 μg/m3). We have demonstrated that a hybrid LUR/BME model can provide accurate predictions of O3 concentrations with high spatio-temporal resolution at the national scale in mainland China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助JJS采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
7秒前
Hayward发布了新的文献求助10
7秒前
11秒前
tlj0808发布了新的文献求助10
12秒前
哲别发布了新的文献求助10
15秒前
ding应助Hayward采纳,获得30
18秒前
桃桃发布了新的文献求助10
21秒前
24秒前
26秒前
gdpu_omics发布了新的文献求助10
28秒前
JJS发布了新的文献求助10
31秒前
JJS完成签到,获得积分10
37秒前
Hayward完成签到,获得积分10
37秒前
小熊猫完成签到,获得积分10
38秒前
Yingzi完成签到,获得积分10
1分钟前
ramsey33完成签到 ,获得积分10
1分钟前
桃桃完成签到,获得积分10
1分钟前
1分钟前
乐乐应助兔子采纳,获得30
1分钟前
小不点发布了新的文献求助10
1分钟前
酷波er应助盛夏如花采纳,获得10
1分钟前
1分钟前
LEETHEO完成签到,获得积分10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Kevin完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
盛夏如花发布了新的文献求助10
2分钟前
王芷蕾发布了新的文献求助10
2分钟前
沉默寻凝完成签到,获得积分10
2分钟前
2分钟前
兔子发布了新的文献求助30
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644645
求助须知:如何正确求助?哪些是违规求助? 4764785
关于积分的说明 15025394
捐赠科研通 4802996
什么是DOI,文献DOI怎么找? 2567787
邀请新用户注册赠送积分活动 1525416
关于科研通互助平台的介绍 1484942