已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning–Based Automatic Rating for Cardinal Symptoms of Parkinson Disease

帕金森病 人工智能 疾病 心理学 物理医学与康复 机器学习 计算机科学 认知心理学 医学 病理
作者
Kye Won Park,Eun‐Jae Lee,Jun Seong Lee,Jinhoon Jeong,Nari Choi,Sungyang Jo,Min-A Jung,Ja Yeon,Dong‐Wha Kang,June‐Goo Lee,Sun Ju Chung
出处
期刊:Neurology [Lippincott Williams & Wilkins]
卷期号:96 (13) 被引量:41
标识
DOI:10.1212/wnl.0000000000011654
摘要

Objective

We developed and investigated the feasibility of a machine learning–based automated rating for the 2 cardinal symptoms of Parkinson disease (PD): resting tremor and bradykinesia.

Methods

Using OpenPose, a deep learning–based human pose estimation program, we analyzed video clips for resting tremor and finger tapping of the bilateral upper limbs of 55 patients with PD (110 arms). Key motion parameters, including resting tremor amplitude and finger tapping speed, amplitude, and fatigue, were extracted to develop a machine learning–based automatic Unified Parkinson9s Disease Rating Scale (UPDRS) rating using support vector machine (SVM) method. To evaluate the performance of this model, we calculated weighted κ and intraclass correlation coefficients (ICCs) between the model and the gold standard rating by a movement disorder specialist who is trained and certified by the Movement Disorder Society for UPDRS rating. These values were compared to weighted κ and ICC between a nontrained human rater and the gold standard rating.

Results

For resting tremors, the SVM model showed a very good to excellent reliability range with the gold standard rating (κ 0.791; ICC 0.927), with both values higher than that of nontrained human rater (κ 0.662; ICC 0.861). For finger tapping, the SVM model showed a very good reliability range with the gold standard rating (κ 0.700 and ICC 0.793), which was comparable to that for nontrained human raters (κ 0.627; ICC 0.797).

Conclusion

Machine learning–based algorithms that automatically rate PD cardinal symptoms are feasible, with more accurate results than nontrained human ratings.

Classification of Evidence

This study provides Class II evidence that machine learning–based automated rating of resting tremor and bradykinesia in people with PD has very good reliability compared to a rating by a movement disorder specialist.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
9秒前
nicenice发布了新的文献求助10
14秒前
咕噜噜完成签到,获得积分10
18秒前
闫雪发布了新的文献求助10
19秒前
20秒前
24秒前
25秒前
Simpson完成签到 ,获得积分10
28秒前
www发布了新的文献求助10
29秒前
我是老大应助ceeray23采纳,获得20
32秒前
李爱国应助zzzkyt采纳,获得10
35秒前
lb001完成签到 ,获得积分10
37秒前
zzjjyy完成签到,获得积分10
38秒前
小刘发布了新的文献求助10
41秒前
43秒前
zzzkyt完成签到,获得积分10
43秒前
万能图书馆应助www采纳,获得10
46秒前
zzzkyt发布了新的文献求助10
47秒前
Hyh_orz应助onlyan采纳,获得20
48秒前
49秒前
50秒前
霜鸣完成签到,获得积分20
50秒前
霜鸣发布了新的文献求助10
56秒前
57秒前
lynn完成签到,获得积分10
58秒前
xiaoleihu完成签到 ,获得积分10
58秒前
singber完成签到,获得积分10
58秒前
龙猫爱看书完成签到,获得积分10
59秒前
ceeray23发布了新的文献求助20
1分钟前
梦醒了完成签到 ,获得积分10
1分钟前
111111完成签到,获得积分10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
xdlongchem完成签到,获得积分10
1分钟前
eee完成签到 ,获得积分10
1分钟前
cherlie完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2213sss完成签到,获得积分10
1分钟前
aa完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532047
关于积分的说明 11256141
捐赠科研通 3270918
什么是DOI,文献DOI怎么找? 1805105
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216