Machine Learning–Based Automatic Rating for Cardinal Symptoms of Parkinson Disease

帕金森病 人工智能 疾病 心理学 物理医学与康复 机器学习 计算机科学 认知心理学 医学 病理
作者
Kye Won Park,Eun‐Jae Lee,Jun Seong Lee,Jinhoon Jeong,Nari Choi,Sungyang Jo,Min-A Jung,Ja Yeon,Dong‐Wha Kang,June‐Goo Lee,Sun Ju Chung
出处
期刊:Neurology [Lippincott Williams & Wilkins]
卷期号:96 (13) 被引量:41
标识
DOI:10.1212/wnl.0000000000011654
摘要

Objective

We developed and investigated the feasibility of a machine learning–based automated rating for the 2 cardinal symptoms of Parkinson disease (PD): resting tremor and bradykinesia.

Methods

Using OpenPose, a deep learning–based human pose estimation program, we analyzed video clips for resting tremor and finger tapping of the bilateral upper limbs of 55 patients with PD (110 arms). Key motion parameters, including resting tremor amplitude and finger tapping speed, amplitude, and fatigue, were extracted to develop a machine learning–based automatic Unified Parkinson9s Disease Rating Scale (UPDRS) rating using support vector machine (SVM) method. To evaluate the performance of this model, we calculated weighted κ and intraclass correlation coefficients (ICCs) between the model and the gold standard rating by a movement disorder specialist who is trained and certified by the Movement Disorder Society for UPDRS rating. These values were compared to weighted κ and ICC between a nontrained human rater and the gold standard rating.

Results

For resting tremors, the SVM model showed a very good to excellent reliability range with the gold standard rating (κ 0.791; ICC 0.927), with both values higher than that of nontrained human rater (κ 0.662; ICC 0.861). For finger tapping, the SVM model showed a very good reliability range with the gold standard rating (κ 0.700 and ICC 0.793), which was comparable to that for nontrained human raters (κ 0.627; ICC 0.797).

Conclusion

Machine learning–based algorithms that automatically rate PD cardinal symptoms are feasible, with more accurate results than nontrained human ratings.

Classification of Evidence

This study provides Class II evidence that machine learning–based automated rating of resting tremor and bradykinesia in people with PD has very good reliability compared to a rating by a movement disorder specialist.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜的秀完成签到,获得积分10
刚刚
Charles完成签到,获得积分10
2秒前
hao发布了新的文献求助10
2秒前
小嘎发布了新的文献求助10
2秒前
ABin完成签到,获得积分10
4秒前
Jasper应助qixiaoqi采纳,获得10
4秒前
FangyingTang完成签到 ,获得积分10
5秒前
金枪鱼子完成签到,获得积分10
5秒前
theyoung发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
赘婿应助liu采纳,获得10
6秒前
小马甲应助清仔采纳,获得10
6秒前
6秒前
luoyue完成签到,获得积分10
6秒前
yuan发布了新的文献求助10
7秒前
科研通AI5应助JR采纳,获得30
7秒前
8秒前
海阔天空发布了新的文献求助10
9秒前
SYLH应助WangZhen采纳,获得10
9秒前
票子发布了新的文献求助10
9秒前
苹果柜子完成签到 ,获得积分10
9秒前
活泼的平灵完成签到,获得积分10
10秒前
愤怒的咖啡完成签到,获得积分10
10秒前
愉快的银耳汤完成签到,获得积分10
11秒前
又又完成签到,获得积分10
12秒前
ypres完成签到 ,获得积分10
13秒前
13秒前
13秒前
zzzk完成签到 ,获得积分10
13秒前
酒精过敏完成签到,获得积分10
13秒前
席冥完成签到,获得积分10
15秒前
16秒前
搜集达人应助可乐采纳,获得10
16秒前
17秒前
清仔发布了新的文献求助10
17秒前
kevin发布了新的文献求助10
18秒前
飘逸怜菡完成签到 ,获得积分10
18秒前
单身的钧完成签到,获得积分10
19秒前
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066