亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dictionary learning and shift-invariant sparse coding denoising for controlled-source electromagnetic data combined with complementary ensemble empirical mode decomposition

计算机科学 模式识别(心理学) 降噪 噪音(视频) 频域 人工智能 算法 计算机视觉 图像(数学)
作者
Guang Li,Zhiyuan He,Jingtian Tang,Juzhi Deng,Xiaoqiong Liu,Hao Zhu
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (3): E185-E198 被引量:22
标识
DOI:10.1190/geo2020-0246.1
摘要

Controlled-source electromagnetic (CSEM) data recorded in industrialized areas are inevitably contaminated by strong cultural noise. Traditional noise attenuation methods are often ineffective for intricate aperiodic noise. To address the abovementioned problem, we have developed a novel noise isolation method based on the fast Fourier transform, complementary ensemble empirical mode decomposition (CEEMD), and shift-invariant sparse coding (SISC, an unsupervised machine-learning algorithm under a data-driven framework). First, large powerline noise is accurately subtracted in the frequency domain. Then, the CEEMD-based algorithm is used to correct the large baseline drift. Finally, taking advantage of the sparsity of periodic signals, SISC is applied to autonomously learn a feature atom (the useful signal with a length of one period) from the detrended signal and recover the CSEM signal with high accuracy. We determine the performance of the SISC by comparing it with three other promising signal processing methods, such as the mathematic morphology filtering, soft-threshold wavelet filtering, and K-singular-value decomposition (another dictionary learning method) sparse decomposition. Experimental results illustrate that SISC provides the best performance. Robustness test results indicate that SISC can increase the signal-to-noise ratio of noisy signal from 0 to more than 15 dB. Case studies of synthetic and real data collected in the Chinese provinces of Sichuan and Yunnan indicate that our method is capable of effectively recovering the useful signal from the observed data contaminated with different kinds of strong ambient noise. The curves of U/I and apparent resistivity after applying our method improved greatly. Moreover, our method performs better than the robust estimation method based on correlation analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emanon发布了新的文献求助10
7秒前
从容芮应助桃子爱学习采纳,获得30
10秒前
Emanon完成签到,获得积分10
13秒前
李健应助科研通管家采纳,获得10
26秒前
37秒前
kuoping完成签到,获得积分0
1分钟前
2分钟前
GingerF应助科研通管家采纳,获得50
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
浮游应助DFS采纳,获得10
2分钟前
2分钟前
CRUSADER完成签到,获得积分10
3分钟前
3分钟前
xt完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
Criminology34应助科研通管家采纳,获得20
4分钟前
科研通AI6应助LBB采纳,获得10
4分钟前
华仔应助HYX采纳,获得10
5分钟前
5分钟前
HYX完成签到,获得积分10
5分钟前
5分钟前
6分钟前
HYX发布了新的文献求助10
6分钟前
顾矜应助HYX采纳,获得10
6分钟前
6分钟前
沉默御姐完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
yangshu发布了新的文献求助10
7分钟前
7分钟前
7分钟前
HYX发布了新的文献求助10
8分钟前
Suraim完成签到,获得积分10
8分钟前
闻巷雨完成签到 ,获得积分10
8分钟前
李爱国应助luo1采纳,获得10
8分钟前
二十一发布了新的文献求助10
8分钟前
Alisha完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078373
求助须知:如何正确求助?哪些是违规求助? 4297135
关于积分的说明 13387869
捐赠科研通 4119849
什么是DOI,文献DOI怎么找? 2256294
邀请新用户注册赠送积分活动 1260569
关于科研通互助平台的介绍 1194218