Dictionary learning and shift-invariant sparse coding denoising for controlled-source electromagnetic data combined with complementary ensemble empirical mode decomposition

计算机科学 模式识别(心理学) 降噪 噪音(视频) 频域 人工智能 算法 计算机视觉 图像(数学)
作者
Guang Li,Zhiyuan He,Jingtian Tang,Juzhi Deng,Xiaoqiong Liu,Hao Zhu
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (3): E185-E198 被引量:22
标识
DOI:10.1190/geo2020-0246.1
摘要

Controlled-source electromagnetic (CSEM) data recorded in industrialized areas are inevitably contaminated by strong cultural noise. Traditional noise attenuation methods are often ineffective for intricate aperiodic noise. To address the abovementioned problem, we have developed a novel noise isolation method based on the fast Fourier transform, complementary ensemble empirical mode decomposition (CEEMD), and shift-invariant sparse coding (SISC, an unsupervised machine-learning algorithm under a data-driven framework). First, large powerline noise is accurately subtracted in the frequency domain. Then, the CEEMD-based algorithm is used to correct the large baseline drift. Finally, taking advantage of the sparsity of periodic signals, SISC is applied to autonomously learn a feature atom (the useful signal with a length of one period) from the detrended signal and recover the CSEM signal with high accuracy. We determine the performance of the SISC by comparing it with three other promising signal processing methods, such as the mathematic morphology filtering, soft-threshold wavelet filtering, and K-singular-value decomposition (another dictionary learning method) sparse decomposition. Experimental results illustrate that SISC provides the best performance. Robustness test results indicate that SISC can increase the signal-to-noise ratio of noisy signal from 0 to more than 15 dB. Case studies of synthetic and real data collected in the Chinese provinces of Sichuan and Yunnan indicate that our method is capable of effectively recovering the useful signal from the observed data contaminated with different kinds of strong ambient noise. The curves of U/I and apparent resistivity after applying our method improved greatly. Moreover, our method performs better than the robust estimation method based on correlation analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
L2发布了新的文献求助10
刚刚
prefectmi完成签到,获得积分10
刚刚
zzz发布了新的文献求助10
1秒前
cccc发布了新的文献求助10
1秒前
2秒前
jj完成签到,获得积分20
3秒前
3秒前
4秒前
Album发布了新的文献求助10
4秒前
6秒前
两颗西柚发布了新的文献求助10
6秒前
7秒前
orixero应助追寻荔枝采纳,获得10
7秒前
斯文败类应助琥珀采纳,获得10
8秒前
Y哦莫哦莫发布了新的文献求助10
8秒前
9秒前
10秒前
舒心的秋荷完成签到 ,获得积分10
10秒前
10秒前
L2完成签到,获得积分20
10秒前
在水一方应助北柑采纳,获得10
10秒前
踏雪无痕发布了新的文献求助10
11秒前
11秒前
Coral.发布了新的文献求助10
12秒前
12秒前
wayne555555发布了新的文献求助10
13秒前
13秒前
彭于晏应助zhaoyuyuan采纳,获得10
14秒前
科研小白完成签到 ,获得积分10
14秒前
15秒前
15秒前
Akim应助jianglili采纳,获得10
16秒前
超越好帅发布了新的文献求助10
16秒前
17秒前
17秒前
鸦紗发布了新的文献求助10
17秒前
wayne555555完成签到,获得积分20
19秒前
BREEZE发布了新的文献求助10
20秒前
20秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107024
捐赠科研通 3232788
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870389
科研通“疑难数据库(出版商)”最低求助积分说明 802011