亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dictionary learning and shift-invariant sparse coding denoising for controlled-source electromagnetic data combined with complementary ensemble empirical mode decomposition

计算机科学 模式识别(心理学) 降噪 噪音(视频) 频域 人工智能 算法 计算机视觉 图像(数学)
作者
Guang Li,Zhiyuan He,Jingtian Tang,Juzhi Deng,Xiaoqiong Liu,Hao Zhu
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (3): E185-E198 被引量:22
标识
DOI:10.1190/geo2020-0246.1
摘要

Controlled-source electromagnetic (CSEM) data recorded in industrialized areas are inevitably contaminated by strong cultural noise. Traditional noise attenuation methods are often ineffective for intricate aperiodic noise. To address the abovementioned problem, we have developed a novel noise isolation method based on the fast Fourier transform, complementary ensemble empirical mode decomposition (CEEMD), and shift-invariant sparse coding (SISC, an unsupervised machine-learning algorithm under a data-driven framework). First, large powerline noise is accurately subtracted in the frequency domain. Then, the CEEMD-based algorithm is used to correct the large baseline drift. Finally, taking advantage of the sparsity of periodic signals, SISC is applied to autonomously learn a feature atom (the useful signal with a length of one period) from the detrended signal and recover the CSEM signal with high accuracy. We determine the performance of the SISC by comparing it with three other promising signal processing methods, such as the mathematic morphology filtering, soft-threshold wavelet filtering, and K-singular-value decomposition (another dictionary learning method) sparse decomposition. Experimental results illustrate that SISC provides the best performance. Robustness test results indicate that SISC can increase the signal-to-noise ratio of noisy signal from 0 to more than 15 dB. Case studies of synthetic and real data collected in the Chinese provinces of Sichuan and Yunnan indicate that our method is capable of effectively recovering the useful signal from the observed data contaminated with different kinds of strong ambient noise. The curves of U/I and apparent resistivity after applying our method improved greatly. Moreover, our method performs better than the robust estimation method based on correlation analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助kk采纳,获得10
刚刚
luck完成签到,获得积分10
2秒前
ceeray23发布了新的文献求助20
2秒前
淡淡的秋柳完成签到 ,获得积分10
5秒前
汉堡包应助J1n9采纳,获得10
9秒前
10秒前
Lin完成签到 ,获得积分10
10秒前
xixiazhiwang完成签到 ,获得积分10
11秒前
君寻完成签到,获得积分10
12秒前
君寻发布了新的文献求助10
16秒前
exing完成签到,获得积分10
17秒前
27秒前
28秒前
白雨蕊发布了新的文献求助10
34秒前
JamesPei应助任婵娟采纳,获得10
38秒前
momo发布了新的文献求助10
47秒前
55秒前
媛媛完成签到,获得积分10
1分钟前
数理化发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Gilbert发布了新的文献求助30
1分钟前
吃了吃了完成签到,获得积分10
1分钟前
搞怪的白云完成签到 ,获得积分10
1分钟前
可爱的函函应助数理化采纳,获得10
1分钟前
Gilbert完成签到,获得积分10
1分钟前
xiaohardy完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
ZB完成签到,获得积分10
1分钟前
辣条我有呀完成签到,获得积分10
1分钟前
1分钟前
Robert发布了新的文献求助10
1分钟前
咸鸭蛋完成签到 ,获得积分10
1分钟前
董大海发布了新的文献求助80
1分钟前
科研通AI6应助呆萌剑封采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573343
求助须知:如何正确求助?哪些是违规求助? 4659427
关于积分的说明 14724572
捐赠科研通 4599247
什么是DOI,文献DOI怎么找? 2524237
邀请新用户注册赠送积分活动 1494711
关于科研通互助平台的介绍 1464737