Dictionary learning and shift-invariant sparse coding denoising for controlled-source electromagnetic data combined with complementary ensemble empirical mode decomposition

计算机科学 模式识别(心理学) 降噪 噪音(视频) 频域 人工智能 算法 计算机视觉 图像(数学)
作者
Guang Li,Zhiyuan He,Jingtian Tang,Juzhi Deng,Xiaoqiong Liu,Hao Zhu
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (3): E185-E198 被引量:22
标识
DOI:10.1190/geo2020-0246.1
摘要

Controlled-source electromagnetic (CSEM) data recorded in industrialized areas are inevitably contaminated by strong cultural noise. Traditional noise attenuation methods are often ineffective for intricate aperiodic noise. To address the abovementioned problem, we have developed a novel noise isolation method based on the fast Fourier transform, complementary ensemble empirical mode decomposition (CEEMD), and shift-invariant sparse coding (SISC, an unsupervised machine-learning algorithm under a data-driven framework). First, large powerline noise is accurately subtracted in the frequency domain. Then, the CEEMD-based algorithm is used to correct the large baseline drift. Finally, taking advantage of the sparsity of periodic signals, SISC is applied to autonomously learn a feature atom (the useful signal with a length of one period) from the detrended signal and recover the CSEM signal with high accuracy. We determine the performance of the SISC by comparing it with three other promising signal processing methods, such as the mathematic morphology filtering, soft-threshold wavelet filtering, and K-singular-value decomposition (another dictionary learning method) sparse decomposition. Experimental results illustrate that SISC provides the best performance. Robustness test results indicate that SISC can increase the signal-to-noise ratio of noisy signal from 0 to more than 15 dB. Case studies of synthetic and real data collected in the Chinese provinces of Sichuan and Yunnan indicate that our method is capable of effectively recovering the useful signal from the observed data contaminated with different kinds of strong ambient noise. The curves of U/I and apparent resistivity after applying our method improved greatly. Moreover, our method performs better than the robust estimation method based on correlation analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级小飞侠完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
踏实威完成签到,获得积分10
1秒前
SciGPT应助zzaxx123采纳,获得10
2秒前
弄香发布了新的文献求助10
4秒前
欣慰的白羊完成签到,获得积分10
5秒前
fanhongpeng完成签到 ,获得积分10
5秒前
5秒前
6秒前
ermiao发布了新的文献求助10
6秒前
小李子完成签到,获得积分10
8秒前
JamesPei应助曙丽盼采纳,获得10
9秒前
无极微光应助隐形的若灵采纳,获得20
9秒前
打打应助种花家的狗狗采纳,获得10
9秒前
善学以致用应助TingtingGZ采纳,获得10
9秒前
Stroeve完成签到,获得积分10
10秒前
lzylzy完成签到,获得积分10
10秒前
11秒前
11秒前
zh完成签到,获得积分10
13秒前
lzylzy发布了新的文献求助10
14秒前
15秒前
李顺利给李顺利的求助进行了留言
16秒前
16秒前
16秒前
17秒前
17秒前
18秒前
18秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
yanghj完成签到,获得积分20
21秒前
21秒前
22秒前
莎akkk发布了新的文献求助10
23秒前
曙丽盼发布了新的文献求助10
23秒前
Hermon发布了新的文献求助10
23秒前
星辰大海应助七栀采纳,获得10
23秒前
TingtingGZ发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526942
求助须知:如何正确求助?哪些是违规求助? 4616873
关于积分的说明 14556205
捐赠科研通 4555440
什么是DOI,文献DOI怎么找? 2496353
邀请新用户注册赠送积分活动 1476654
关于科研通互助平台的介绍 1448212