Dictionary learning and shift-invariant sparse coding denoising for controlled-source electromagnetic data combined with complementary ensemble empirical mode decomposition

计算机科学 模式识别(心理学) 降噪 噪音(视频) 频域 人工智能 算法 计算机视觉 图像(数学)
作者
Guang Li,Zhiyuan He,Jingtian Tang,Juzhi Deng,Xiaoqiong Liu,Hao Zhu
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (3): E185-E198 被引量:22
标识
DOI:10.1190/geo2020-0246.1
摘要

Controlled-source electromagnetic (CSEM) data recorded in industrialized areas are inevitably contaminated by strong cultural noise. Traditional noise attenuation methods are often ineffective for intricate aperiodic noise. To address the abovementioned problem, we have developed a novel noise isolation method based on the fast Fourier transform, complementary ensemble empirical mode decomposition (CEEMD), and shift-invariant sparse coding (SISC, an unsupervised machine-learning algorithm under a data-driven framework). First, large powerline noise is accurately subtracted in the frequency domain. Then, the CEEMD-based algorithm is used to correct the large baseline drift. Finally, taking advantage of the sparsity of periodic signals, SISC is applied to autonomously learn a feature atom (the useful signal with a length of one period) from the detrended signal and recover the CSEM signal with high accuracy. We determine the performance of the SISC by comparing it with three other promising signal processing methods, such as the mathematic morphology filtering, soft-threshold wavelet filtering, and K-singular-value decomposition (another dictionary learning method) sparse decomposition. Experimental results illustrate that SISC provides the best performance. Robustness test results indicate that SISC can increase the signal-to-noise ratio of noisy signal from 0 to more than 15 dB. Case studies of synthetic and real data collected in the Chinese provinces of Sichuan and Yunnan indicate that our method is capable of effectively recovering the useful signal from the observed data contaminated with different kinds of strong ambient noise. The curves of U/I and apparent resistivity after applying our method improved greatly. Moreover, our method performs better than the robust estimation method based on correlation analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
HOAN应助科研通管家采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得30
1秒前
婵婵完成签到,获得积分10
1秒前
1秒前
1秒前
老福贵儿应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得30
1秒前
自由白凡完成签到,获得积分10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
打打应助科研通管家采纳,获得10
2秒前
田様应助ninomae采纳,获得10
2秒前
2秒前
雍雍完成签到 ,获得积分10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
纸万完成签到,获得积分10
5秒前
如意修洁完成签到 ,获得积分20
5秒前
5秒前
香蕉觅云应助浮浮世世采纳,获得10
6秒前
欣慰的小甜瓜完成签到 ,获得积分10
6秒前
7秒前
脑洞疼应助小蘑菇采纳,获得10
7秒前
虚心沂完成签到,获得积分10
8秒前
身为风帆发布了新的文献求助10
8秒前
9秒前
开心使者发布了新的文献求助10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978