系列(地层学)
同源(生物学)
持久同源性
谱系学
计算生物学
计算机科学
历史
生物
遗传学
古生物学
算法
基因
作者
Налини Равишанкер,Renjie Chen
摘要
Abstract Topological data analysis (TDA) uses information from topological structures in complex data for statistical analysis and learning. This paper discusses persistent homology, a part of computational (algorithmic) topology that converts data into simplicial complexes and elicits information about the persistence of homology classes in the data. It computes and outputs the birth and death of such topologies via a persistence diagram. Data inputs for persistent homology are usually represented as point clouds or as functions, while the outputs depend on the nature of the analysis and commonly consist of either a persistence diagram, or persistence landscapes. This paper gives an introductory level tutorial on computing these summaries for time series using R, followed by an overview on using these approaches for time series classification and clustering. This article is categorized under: Statistical Learning and Exploratory Methods of the Data Sciences > Clustering and Classification Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data Applications of Computational Statistics > Computational Mathematics
科研通智能强力驱动
Strongly Powered by AbleSci AI