Nonparametric and data-driven interpolation of subsurface soil stratigraphy from limited data using multiple point statistics

地层学 插值(计算机图形学) 非参数统计 地质学 参数统计 岩土工程 空间分析 点(几何) 数据点 土壤科学 计算机科学 算法 统计 遥感 人工智能 数学 几何学 图像(数学) 构造学 古生物学
作者
Chao Shi,Yu Wang
出处
期刊:Canadian Geotechnical Journal [Canadian Science Publishing]
卷期号:58 (2): 261-280 被引量:60
标识
DOI:10.1139/cgj-2019-0843
摘要

An essential task in many geotechnical projects is delineation of subsurface soil stratigraphy from scatter measurements. Geotechnical engineers often use their knowledge on local geology and interpret soil strata boundaries by linear interpolation of measured data. This usual practice may encounter difficulties when interpreting complex deposits, particularly when measurements are limited. In this study, a novel nonparametric, data-driven method based on multiple point statistics (MPS) is proposed to interpolate subsurface soil stratigraphy from sparse measurements. MPS may be formulated as Bayesian supervised machine learning, which adaptively learns high-order spatial information (e.g., curvilinear features of soil layers) using sparse measurements obtained in a specific site and training image that reflects pre-existing engineering knowledge on similar geological settings. The proposed method is the first ever purely data-driven method (i.e., without using any pre-specified parametric functions) for geotechnical site characterization. The proposed method is illustrated by a simulated example and real data from a reclamation site in Hong Kong. The proposed method not only accurately interpolates the subsurface soil stratigraphy from sparse measurements, but also quantifies uncertainty associated with the interpolation. Effects of governing parameters in the proposed method are explicitly investigated, and parameters appropriate for subsurface soil stratigraphy are identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
King16完成签到,获得积分10
刚刚
刚刚
1秒前
ding应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
jmy完成签到,获得积分10
1秒前
Leif应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
积极的板栗完成签到 ,获得积分10
1秒前
咯咚完成签到 ,获得积分10
1秒前
ding应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
maox1aoxin应助科研通管家采纳,获得30
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
QXS发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
Liekkas发布了新的文献求助10
2秒前
可爱的函函应助bdvdsrwteges采纳,获得10
4秒前
木木雨发布了新的文献求助10
5秒前
鬲木发布了新的文献求助10
5秒前
mao12wang发布了新的文献求助10
5秒前
L坨坨完成签到 ,获得积分10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759