亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Epidemic Propagation With Positive and Negative Preventive Information in Multiplex Networks

流行病模型 马尔可夫链 计算机科学 马尔科夫蒙特卡洛 蒙特卡罗方法 医学 环境卫生 数学 统计 机器学习 人口
作者
Zhishuang Wang,Chengyi Xia,Zengqiang Chen,Guanrong Chen
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (3): 1454-1462 被引量:224
标识
DOI:10.1109/tcyb.2019.2960605
摘要

We propose a novel epidemic model based on two-layered multiplex networks to explore the influence of positive and negative preventive information on epidemic propagation. In the model, one layer represents a social network with positive and negative preventive information spreading competitively, while the other one denotes the physical contact network with epidemic propagation. The individuals who are aware of positive prevention will take more effective measures to avoid being infected than those who are aware of negative prevention. Taking the microscopic Markov chain (MMC) approach, we analytically derive the expression of the epidemic threshold for the proposed epidemic model, which indicates that the diffusion of positive and negative prevention information, as well as the topology of the physical contact network have a significant impact on the epidemic threshold. By comparing the results obtained with MMC and those with the Monte Carlo (MC) simulations, it is found that they are in good agreement, but MMC can well describe the dynamics of the proposed model. Meanwhile, through extensive simulations, we demonstrate the impact of positive and negative preventive information on the epidemic threshold, as well as the prevalence of infectious diseases. We also find that the epidemic prevalence and the epidemic outbreaks can be suppressed by the diffusion of positive preventive information and be promoted by the diffusion of negative preventive information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻真好啊完成签到,获得积分10
2秒前
xx关闭了xx文献求助
7秒前
9秒前
CMM完成签到,获得积分20
10秒前
CMM发布了新的文献求助10
14秒前
两袖清风完成签到 ,获得积分10
25秒前
风华正茂发布了新的文献求助30
33秒前
呼啦呼啦完成签到 ,获得积分10
38秒前
cc应助科研通管家采纳,获得10
43秒前
Rondab应助科研通管家采纳,获得10
43秒前
Rondab应助科研通管家采纳,获得10
43秒前
YifanWang应助科研通管家采纳,获得10
43秒前
43秒前
Rondab应助科研通管家采纳,获得10
43秒前
Rondab应助科研通管家采纳,获得10
44秒前
Sandy应助科研通管家采纳,获得80
44秒前
cc应助科研通管家采纳,获得10
44秒前
46秒前
55秒前
葛力发布了新的文献求助10
59秒前
风华正茂完成签到,获得积分10
1分钟前
华仔应助chen采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
金枪鱼子发布了新的文献求助30
1分钟前
1分钟前
yznfly应助金枪鱼子采纳,获得30
1分钟前
chen发布了新的文献求助10
1分钟前
1分钟前
xx发布了新的文献求助10
2分钟前
可爱的函函应助整齐海秋采纳,获得10
2分钟前
葛力发布了新的文献求助10
2分钟前
2分钟前
2分钟前
整齐海秋发布了新的文献求助10
2分钟前
123发布了新的文献求助10
2分钟前
Sandy应助科研通管家采纳,获得10
2分钟前
Sandy应助科研通管家采纳,获得30
2分钟前
Rondab应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960053
求助须知:如何正确求助?哪些是违规求助? 3506261
关于积分的说明 11128558
捐赠科研通 3238254
什么是DOI,文献DOI怎么找? 1789617
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056