Epidemic Propagation With Positive and Negative Preventive Information in Multiplex Networks

流行病模型 马尔可夫链 计算机科学 马尔科夫蒙特卡洛 蒙特卡罗方法 医学 环境卫生 数学 统计 机器学习 人口
作者
Zhishuang Wang,Chengyi Xia,Zengqiang Chen,Guanrong Chen
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (3): 1454-1462 被引量:253
标识
DOI:10.1109/tcyb.2019.2960605
摘要

We propose a novel epidemic model based on two-layered multiplex networks to explore the influence of positive and negative preventive information on epidemic propagation. In the model, one layer represents a social network with positive and negative preventive information spreading competitively, while the other one denotes the physical contact network with epidemic propagation. The individuals who are aware of positive prevention will take more effective measures to avoid being infected than those who are aware of negative prevention. Taking the microscopic Markov chain (MMC) approach, we analytically derive the expression of the epidemic threshold for the proposed epidemic model, which indicates that the diffusion of positive and negative prevention information, as well as the topology of the physical contact network have a significant impact on the epidemic threshold. By comparing the results obtained with MMC and those with the Monte Carlo (MC) simulations, it is found that they are in good agreement, but MMC can well describe the dynamics of the proposed model. Meanwhile, through extensive simulations, we demonstrate the impact of positive and negative preventive information on the epidemic threshold, as well as the prevalence of infectious diseases. We also find that the epidemic prevalence and the epidemic outbreaks can be suppressed by the diffusion of positive preventive information and be promoted by the diffusion of negative preventive information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lj完成签到,获得积分10
1秒前
1秒前
BowieHuang应助566采纳,获得10
1秒前
大模型应助迷你的醉薇采纳,获得10
2秒前
jjjincc完成签到,获得积分10
3秒前
领导范儿应助Honahlee采纳,获得10
3秒前
Harssi发布了新的文献求助10
3秒前
4秒前
可爱的函函应助文房四宝采纳,获得10
4秒前
Ovo完成签到,获得积分20
4秒前
4秒前
zkygmu发布了新的文献求助10
4秒前
lio发布了新的文献求助50
4秒前
怕孤单的丁真完成签到,获得积分10
4秒前
5秒前
6秒前
苹果涵蕾发布了新的文献求助10
6秒前
大力的问蕊完成签到,获得积分10
6秒前
9秒前
破碎时间完成签到 ,获得积分10
9秒前
阔达如松发布了新的文献求助10
9秒前
Orange应助默默采纳,获得10
9秒前
9秒前
9秒前
GDN完成签到 ,获得积分10
9秒前
哥哥完成签到,获得积分10
10秒前
hwyk发布了新的文献求助10
11秒前
11秒前
蒋若风发布了新的文献求助10
11秒前
amanda应助张益发采纳,获得20
11秒前
cx_008完成签到,获得积分10
11秒前
12秒前
12秒前
FashionBoy应助卫三采纳,获得10
12秒前
12秒前
Orange应助傻傻的仙人掌采纳,获得10
13秒前
荒林完成签到,获得积分20
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836