球体
聚二甲基硅氧烷
弹性体
肿瘤微环境
材料科学
三维细胞培养
纳米技术
体内
细胞培养
细胞
生物物理学
肿瘤细胞
化学
复合材料
生物
癌症研究
生物技术
生物化学
遗传学
作者
Hyun Ji An,Hyo Sil Kim,Jung Ah Kwon,Jihwan Song,Inhee Choi
标识
DOI:10.1021/acsami.9b21471
摘要
Three-dimensional (3D) cell culture platforms have recently received a great deal of attention, as these systems are able to recapitulate the in vivo microenvironment of tissues or tumors. Herein, we describe adjustable and versatile elastomeric well structures for spheroid formation and their use for in situ analyses as a tunable 3D cell culture platform. Elastomeric spherical wells are fabricated using a one-step interfacial reaction between aqueous droplets on immiscible liquid polydimethylsiloxane (PDMS) without any template or expensive equipment. Because of their differing surface tensions, spherical wells are spontaneously formed on liquid PDMS with various sizes and curvatures that are easily controlled. Using arrays of these optimized wells, single tumor spheroids within each well were successfully formed at high efficiency (up to 97%) by coculturing tumor cells and fibroblasts to reflect the complex microenvironment of cancer tissue. Moreover, the tumor spheroids formed within the interfacial wells were directly applied for observing drug responses and monitoring reactive oxygen species (ROS) to investigate tumor cell responses to drugs or their 3D microenvironment. We believe that our proposed platform provides a significant contribution to the multimodal analyses of anticancer therapeutics and the tumor microenvironment.
科研通智能强力驱动
Strongly Powered by AbleSci AI