清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Data-driven cognitive phenotypes in subjects with bipolar disorder and their clinical markers of severity

认知 神经心理学 口语流利性测试 心理学 双相情感障碍 判别函数分析 神经心理评估 认知灵活性 睡眠剥夺对认知功能的影响 临床心理学 言语记忆 精神科 统计 数学
作者
Francisco Diego Rabelo-da-Ponte,Flávia Moreira Lima,Anabel Martínez‐Arán,Flávio Kapczinski,Eduard Vieta,Adriane Ribeiro Rosa,Maurício Kunz,Letícia Sanguinetti Czepielewski
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:52 (9): 1728-1735 被引量:10
标识
DOI:10.1017/s0033291720003499
摘要

Abstract Background Subjects with bipolar disorder (BD) show heterogeneous cognitive profile and that not necessarily the disease will lead to unfavorable clinical outcomes. We aimed to identify clinical markers of severity among cognitive clusters in individuals with BD through data-driven methods. Methods We recruited 167 outpatients with BD and 100 unaffected volunteers from Brazil and Spain that underwent a neuropsychological assessment. Cognitive functions assessed were inhibitory control, processing speed, cognitive flexibility, verbal fluency, working memory, short- and long-term verbal memory. We performed hierarchical cluster analysis and discriminant function analysis to determine and confirm cognitive clusters, respectively. Then, we used classification and regression tree (CART) algorithm to determine clinical and sociodemographic variables of the previously defined cognitive clusters. Results We identified three neuropsychological subgroups in individuals with BD: intact (35.3%), selectively impaired (34.7%), and severely impaired individuals (29.9%). The most important predictors of cognitive subgroups were years of education, the number of hospitalizations, and age, respectively. The model with CART algorithm showed sensitivity 45.8%, specificity 78.4%, balanced accuracy 62.1%, and the area under the ROC curve was 0.61. Of 10 attributes included in the model, only three variables were able to separate cognitive clusters in BD individuals: years of education, number of hospitalizations, and age. Conclusion These results corroborate with recent findings of neuropsychological heterogeneity in BD, and suggest an overlapping between premorbid and morbid aspects that influence distinct cognitive courses of the disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
大模型应助科研通管家采纳,获得10
37秒前
Only完成签到 ,获得积分10
39秒前
woxinyouyou完成签到,获得积分0
1分钟前
1分钟前
zhangguo完成签到 ,获得积分10
1分钟前
Cosmosurfer完成签到,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
程程发布了新的文献求助10
2分钟前
3分钟前
3分钟前
白华苍松发布了新的文献求助10
3分钟前
3分钟前
4分钟前
刘丰完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
白华苍松发布了新的文献求助10
4分钟前
4分钟前
gang发布了新的文献求助10
5分钟前
拓跋雨梅完成签到 ,获得积分0
5分钟前
5分钟前
思源完成签到 ,获得积分10
5分钟前
蔡从安发布了新的文献求助10
5分钟前
5分钟前
蔡从安发布了新的文献求助10
6分钟前
迟大猫应助蔡从安采纳,获得10
6分钟前
xiaofan应助蔡从安采纳,获得10
6分钟前
xiaofan应助蔡从安采纳,获得10
6分钟前
reflux应助蔡从安采纳,获得10
6分钟前
6分钟前
wei完成签到,获得积分20
6分钟前
Kylin发布了新的文献求助30
6分钟前
小蘑菇应助wei采纳,获得30
6分钟前
刘刘完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
Wei发布了新的文献求助10
7分钟前
tufei完成签到,获得积分10
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555803
求助须知:如何正确求助?哪些是违规求助? 3131401
关于积分的说明 9391049
捐赠科研通 2831096
什么是DOI,文献DOI怎么找? 1556372
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890