已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks

计算机科学 无线 无线网络 资源配置 电信线路 计算机网络 基站 Wi-Fi阵列 选择算法 算法 机器学习 选择(遗传算法) 电信
作者
Mingzhe Chen,Zhaohui Yang,Walid Saad,Changchuan Yin,H. Vincent Poor,Shuguang Cui
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 269-283 被引量:1193
标识
DOI:10.1109/twc.2020.3024629
摘要

In this article, the problem of training federated learning (FL) algorithms over a realistic wireless network is studied. In the considered model, wireless users execute an FL algorithm while training their local FL models using their own data and transmitting the trained local FL models to a base station (BS) that generates a global FL model and sends the model back to the users. Since all training parameters are transmitted over wireless links, the quality of training is affected by wireless factors such as packet errors and the availability of wireless resources. Meanwhile, due to the limited wireless bandwidth, the BS needs to select an appropriate subset of users to execute the FL algorithm so as to build a global FL model accurately. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm. To seek the solution, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of wireless factors on FL. Then, based on the expected convergence rate of the FL algorithm, the optimal transmit power for each user is derived, under a given user selection and uplink resource block (RB) allocation scheme. Finally, the user selection and uplink RB allocation is optimized so as to minimize the FL loss function. Simulation results show that the proposed joint federated learning and communication framework can improve the identification accuracy by up to 1.4%, 3.5% and 4.1%, respectively, compared to: 1) An optimal user selection algorithm with random resource allocation, 2) a standard FL algorithm with random user selection and resource allocation, and 3) a wireless optimization algorithm that minimizes the sum packet error rates of all users while being agnostic to the FL parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuanyuan发布了新的文献求助10
1秒前
3秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
偷看星星完成签到 ,获得积分10
7秒前
小陈发布了新的文献求助10
11秒前
XDSH完成签到 ,获得积分10
14秒前
赘婿应助yy采纳,获得10
15秒前
15秒前
17秒前
吉他独奏手完成签到,获得积分10
20秒前
20秒前
22秒前
可久斯基完成签到 ,获得积分10
23秒前
磐xst完成签到 ,获得积分10
23秒前
24秒前
李欣洳完成签到,获得积分10
24秒前
水刃木发布了新的文献求助10
25秒前
CipherSage应助chcui采纳,获得200
25秒前
木子完成签到,获得积分10
25秒前
拼搏耷完成签到,获得积分10
26秒前
yy发布了新的文献求助10
26秒前
情怀应助hihihi采纳,获得10
28秒前
29秒前
sxmt123456789发布了新的文献求助10
29秒前
11112321321发布了新的文献求助10
30秒前
在水一方应助小陈采纳,获得10
30秒前
33秒前
睡够了不困完成签到,获得积分10
34秒前
34秒前
35秒前
自觉雨文发布了新的文献求助20
35秒前
ZongchenYang发布了新的文献求助10
36秒前
幸运幸福完成签到,获得积分10
37秒前
柯飞扬发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432080
求助须知:如何正确求助?哪些是违规求助? 4544872
关于积分的说明 14194391
捐赠科研通 4464085
什么是DOI,文献DOI怎么找? 2446962
邀请新用户注册赠送积分活动 1438286
关于科研通互助平台的介绍 1415085