已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks

计算机科学 无线 无线网络 资源配置 电信线路 计算机网络 基站 Wi-Fi阵列 选择算法 算法 机器学习 选择(遗传算法) 电信
作者
Mingzhe Chen,Zhaohui Yang,Walid Saad,Changchuan Yin,H. Vincent Poor,Shuguang Cui
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 269-283 被引量:1193
标识
DOI:10.1109/twc.2020.3024629
摘要

In this article, the problem of training federated learning (FL) algorithms over a realistic wireless network is studied. In the considered model, wireless users execute an FL algorithm while training their local FL models using their own data and transmitting the trained local FL models to a base station (BS) that generates a global FL model and sends the model back to the users. Since all training parameters are transmitted over wireless links, the quality of training is affected by wireless factors such as packet errors and the availability of wireless resources. Meanwhile, due to the limited wireless bandwidth, the BS needs to select an appropriate subset of users to execute the FL algorithm so as to build a global FL model accurately. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm. To seek the solution, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of wireless factors on FL. Then, based on the expected convergence rate of the FL algorithm, the optimal transmit power for each user is derived, under a given user selection and uplink resource block (RB) allocation scheme. Finally, the user selection and uplink RB allocation is optimized so as to minimize the FL loss function. Simulation results show that the proposed joint federated learning and communication framework can improve the identification accuracy by up to 1.4%, 3.5% and 4.1%, respectively, compared to: 1) An optimal user selection algorithm with random resource allocation, 2) a standard FL algorithm with random user selection and resource allocation, and 3) a wireless optimization algorithm that minimizes the sum packet error rates of all users while being agnostic to the FL parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111111完成签到 ,获得积分10
1秒前
整齐的飞兰完成签到 ,获得积分10
1秒前
1秒前
yolo发布了新的文献求助10
2秒前
Pauline完成签到 ,获得积分10
3秒前
CodeCraft应助YangMengting采纳,获得10
3秒前
3秒前
7秒前
8秒前
馒头发布了新的文献求助10
8秒前
yolo完成签到,获得积分10
9秒前
黎L完成签到,获得积分10
10秒前
miracle完成签到 ,获得积分10
10秒前
jiang发布了新的文献求助10
12秒前
sakuma发布了新的文献求助10
12秒前
L1q完成签到,获得积分10
13秒前
Criminology34应助爱学习的慕采纳,获得10
13秒前
今后应助handsomecat采纳,获得10
14秒前
网络小卡卡完成签到,获得积分20
16秒前
adai完成签到,获得积分10
16秒前
荀代灵完成签到,获得积分10
16秒前
丘比特应助jiang采纳,获得10
16秒前
17秒前
情怀应助燊yy采纳,获得10
17秒前
小蘑菇应助zzz采纳,获得10
19秒前
122319完成签到,获得积分10
19秒前
小柠关注了科研通微信公众号
20秒前
21秒前
宓e完成签到,获得积分20
21秒前
22秒前
wtian完成签到,获得积分10
23秒前
少女徐必成完成签到 ,获得积分10
23秒前
jiang完成签到,获得积分20
24秒前
蜗牛发布了新的文献求助10
24秒前
htz完成签到 ,获得积分10
25秒前
文艺的鲜花完成签到 ,获得积分10
26秒前
26秒前
孜孜不倦完成签到,获得积分10
27秒前
handsomecat发布了新的文献求助10
28秒前
斯文败类应助organoid elegan采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076531
求助须知:如何正确求助?哪些是违规求助? 4296017
关于积分的说明 13386278
捐赠科研通 4118073
什么是DOI,文献DOI怎么找? 2255117
邀请新用户注册赠送积分活动 1259644
关于科研通互助平台的介绍 1192567