清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks

计算机科学 无线 无线网络 资源配置 电信线路 计算机网络 基站 Wi-Fi阵列 选择算法 算法 机器学习 选择(遗传算法) 电信
作者
Mingzhe Chen,Zhaohui Yang,Walid Saad,Changchuan Yin,H. Vincent Poor,Shuguang Cui
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 269-283 被引量:1193
标识
DOI:10.1109/twc.2020.3024629
摘要

In this article, the problem of training federated learning (FL) algorithms over a realistic wireless network is studied. In the considered model, wireless users execute an FL algorithm while training their local FL models using their own data and transmitting the trained local FL models to a base station (BS) that generates a global FL model and sends the model back to the users. Since all training parameters are transmitted over wireless links, the quality of training is affected by wireless factors such as packet errors and the availability of wireless resources. Meanwhile, due to the limited wireless bandwidth, the BS needs to select an appropriate subset of users to execute the FL algorithm so as to build a global FL model accurately. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm. To seek the solution, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of wireless factors on FL. Then, based on the expected convergence rate of the FL algorithm, the optimal transmit power for each user is derived, under a given user selection and uplink resource block (RB) allocation scheme. Finally, the user selection and uplink RB allocation is optimized so as to minimize the FL loss function. Simulation results show that the proposed joint federated learning and communication framework can improve the identification accuracy by up to 1.4%, 3.5% and 4.1%, respectively, compared to: 1) An optimal user selection algorithm with random resource allocation, 2) a standard FL algorithm with random user selection and resource allocation, and 3) a wireless optimization algorithm that minimizes the sum packet error rates of all users while being agnostic to the FL parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琳io完成签到 ,获得积分10
6秒前
laohei94_6完成签到 ,获得积分10
8秒前
22秒前
无花果应助紫色奶萨采纳,获得10
29秒前
34秒前
科研通AI2S应助arsenal采纳,获得10
35秒前
狂野宛凝发布了新的文献求助10
38秒前
39秒前
光亮静槐完成签到 ,获得积分10
40秒前
Echopotter发布了新的文献求助10
41秒前
紫色奶萨发布了新的文献求助10
43秒前
46秒前
58秒前
Echopotter完成签到,获得积分10
59秒前
59秒前
Jenny发布了新的文献求助30
1分钟前
liwen发布了新的文献求助100
1分钟前
1分钟前
科研通AI2S应助ceeray23采纳,获得20
1分钟前
斯提亚拉发布了新的文献求助10
1分钟前
牛黄完成签到 ,获得积分10
1分钟前
Orange应助科研通管家采纳,获得20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
两个榴莲完成签到,获得积分0
2分钟前
ceeray23发布了新的文献求助30
2分钟前
2分钟前
袁青寒发布了新的文献求助10
2分钟前
zxq完成签到 ,获得积分10
2分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
2分钟前
lucky完成签到 ,获得积分10
2分钟前
绿色猫猫头完成签到 ,获得积分10
3分钟前
CodeCraft应助斯提亚拉采纳,获得10
3分钟前
wrl2023完成签到,获得积分10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
Qing完成签到 ,获得积分10
3分钟前
nextconnie完成签到,获得积分10
3分钟前
4分钟前
斯提亚拉发布了新的文献求助10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554955
求助须知:如何正确求助?哪些是违规求助? 4639554
关于积分的说明 14656343
捐赠科研通 4581473
什么是DOI,文献DOI怎么找? 2512827
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503