A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks

计算机科学 无线 无线网络 资源配置 电信线路 计算机网络 基站 Wi-Fi阵列 选择算法 算法 机器学习 选择(遗传算法) 电信
作者
Mingzhe Chen,Zhaohui Yang,Walid Saad,Changchuan Yin,H. Vincent Poor,Shuguang Cui
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 269-283 被引量:1193
标识
DOI:10.1109/twc.2020.3024629
摘要

In this article, the problem of training federated learning (FL) algorithms over a realistic wireless network is studied. In the considered model, wireless users execute an FL algorithm while training their local FL models using their own data and transmitting the trained local FL models to a base station (BS) that generates a global FL model and sends the model back to the users. Since all training parameters are transmitted over wireless links, the quality of training is affected by wireless factors such as packet errors and the availability of wireless resources. Meanwhile, due to the limited wireless bandwidth, the BS needs to select an appropriate subset of users to execute the FL algorithm so as to build a global FL model accurately. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm. To seek the solution, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of wireless factors on FL. Then, based on the expected convergence rate of the FL algorithm, the optimal transmit power for each user is derived, under a given user selection and uplink resource block (RB) allocation scheme. Finally, the user selection and uplink RB allocation is optimized so as to minimize the FL loss function. Simulation results show that the proposed joint federated learning and communication framework can improve the identification accuracy by up to 1.4%, 3.5% and 4.1%, respectively, compared to: 1) An optimal user selection algorithm with random resource allocation, 2) a standard FL algorithm with random user selection and resource allocation, and 3) a wireless optimization algorithm that minimizes the sum packet error rates of all users while being agnostic to the FL parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
哈哈镜阿姐完成签到,获得积分10
1秒前
脑洞疼应助悉达多采纳,获得10
2秒前
ss完成签到,获得积分10
3秒前
4秒前
5秒前
雪白傲薇发布了新的文献求助50
5秒前
mx关闭了mx文献求助
5秒前
月青悠完成签到,获得积分10
6秒前
科研白菜白完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
赘婿应助lt采纳,获得10
9秒前
9秒前
10秒前
漂亮之桃发布了新的文献求助10
10秒前
羔羊完成签到,获得积分10
10秒前
11秒前
禹无极发布了新的文献求助10
11秒前
12秒前
小叶子完成签到,获得积分20
12秒前
12秒前
12秒前
李木子hust完成签到,获得积分10
13秒前
烟花应助Zero_采纳,获得10
13秒前
天天快乐应助哈哈恬采纳,获得10
13秒前
13秒前
13秒前
白桃乌龙发布了新的文献求助10
14秒前
包子发布了新的文献求助10
14秒前
14秒前
出门右转完成签到,获得积分10
14秒前
Echo发布了新的文献求助10
14秒前
15秒前
王王发布了新的文献求助10
15秒前
可爱的函函应助白椋采纳,获得10
15秒前
飞云发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958693
求助须知:如何正确求助?哪些是违规求助? 3504939
关于积分的说明 11121216
捐赠科研通 3236311
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871307
科研通“疑难数据库(出版商)”最低求助积分说明 802691