A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks

计算机科学 无线 无线网络 资源配置 电信线路 计算机网络 基站 Wi-Fi阵列 选择算法 算法 机器学习 选择(遗传算法) 电信
作者
Mingzhe Chen,Zhaohui Yang,Walid Saad,Changchuan Yin,H. Vincent Poor,Shuguang Cui
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 269-283 被引量:1193
标识
DOI:10.1109/twc.2020.3024629
摘要

In this article, the problem of training federated learning (FL) algorithms over a realistic wireless network is studied. In the considered model, wireless users execute an FL algorithm while training their local FL models using their own data and transmitting the trained local FL models to a base station (BS) that generates a global FL model and sends the model back to the users. Since all training parameters are transmitted over wireless links, the quality of training is affected by wireless factors such as packet errors and the availability of wireless resources. Meanwhile, due to the limited wireless bandwidth, the BS needs to select an appropriate subset of users to execute the FL algorithm so as to build a global FL model accurately. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm. To seek the solution, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of wireless factors on FL. Then, based on the expected convergence rate of the FL algorithm, the optimal transmit power for each user is derived, under a given user selection and uplink resource block (RB) allocation scheme. Finally, the user selection and uplink RB allocation is optimized so as to minimize the FL loss function. Simulation results show that the proposed joint federated learning and communication framework can improve the identification accuracy by up to 1.4%, 3.5% and 4.1%, respectively, compared to: 1) An optimal user selection algorithm with random resource allocation, 2) a standard FL algorithm with random user selection and resource allocation, and 3) a wireless optimization algorithm that minimizes the sum packet error rates of all users while being agnostic to the FL parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万物春发布了新的文献求助10
2秒前
充电宝应助A晨采纳,获得10
3秒前
所所应助ENO_i采纳,获得10
4秒前
尊敬熊完成签到,获得积分10
4秒前
5秒前
何倩发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
Jaden完成签到,获得积分10
6秒前
8秒前
调皮帆布鞋完成签到,获得积分10
10秒前
三寸光阴一个鑫应助Bazinga采纳,获得10
11秒前
清水发布了新的文献求助10
11秒前
12秒前
轻舟未过万重山完成签到,获得积分10
16秒前
16秒前
岑笨笨完成签到,获得积分20
17秒前
17秒前
17秒前
怡然发布了新的文献求助10
18秒前
佟谷兰发布了新的文献求助10
19秒前
隐形曼青应助现实的鹏飞采纳,获得10
21秒前
李健的小迷弟应助kdjm688采纳,获得10
22秒前
尊敬熊发布了新的文献求助20
23秒前
zrkkk完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
醉清风完成签到 ,获得积分10
25秒前
小屁孩完成签到,获得积分10
26秒前
26秒前
小蜜蜂发布了新的文献求助10
26秒前
赘婿应助kdjm688采纳,获得30
28秒前
陈补天完成签到 ,获得积分10
29秒前
和谐以冬完成签到 ,获得积分10
29秒前
桐桐应助彩色的夏青采纳,获得10
32秒前
xiaoyinni发布了新的文献求助100
33秒前
34秒前
蛋堡完成签到 ,获得积分10
35秒前
Orange应助岑笨笨采纳,获得10
37秒前
小蜜蜂完成签到,获得积分10
37秒前
13完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679710
求助须知:如何正确求助?哪些是违规求助? 4993216
关于积分的说明 15170566
捐赠科研通 4839549
什么是DOI,文献DOI怎么找? 2593456
邀请新用户注册赠送积分活动 1546531
关于科研通互助平台的介绍 1504659