A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks

计算机科学 无线 无线网络 资源配置 电信线路 计算机网络 基站 Wi-Fi阵列 选择算法 算法 机器学习 选择(遗传算法) 电信
作者
Mingzhe Chen,Zhaohui Yang,Walid Saad,Changchuan Yin,H. Vincent Poor,Shuguang Cui
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 269-283 被引量:765
标识
DOI:10.1109/twc.2020.3024629
摘要

In this article, the problem of training federated learning (FL) algorithms over a realistic wireless network is studied. In the considered model, wireless users execute an FL algorithm while training their local FL models using their own data and transmitting the trained local FL models to a base station (BS) that generates a global FL model and sends the model back to the users. Since all training parameters are transmitted over wireless links, the quality of training is affected by wireless factors such as packet errors and the availability of wireless resources. Meanwhile, due to the limited wireless bandwidth, the BS needs to select an appropriate subset of users to execute the FL algorithm so as to build a global FL model accurately. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm. To seek the solution, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of wireless factors on FL. Then, based on the expected convergence rate of the FL algorithm, the optimal transmit power for each user is derived, under a given user selection and uplink resource block (RB) allocation scheme. Finally, the user selection and uplink RB allocation is optimized so as to minimize the FL loss function. Simulation results show that the proposed joint federated learning and communication framework can improve the identification accuracy by up to 1.4%, 3.5% and 4.1%, respectively, compared to: 1) An optimal user selection algorithm with random resource allocation, 2) a standard FL algorithm with random user selection and resource allocation, and 3) a wireless optimization algorithm that minimizes the sum packet error rates of all users while being agnostic to the FL parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
日尧完成签到,获得积分10
2秒前
4秒前
4秒前
Ashley发布了新的文献求助10
5秒前
学术老6完成签到 ,获得积分10
5秒前
酷炫依白发布了新的文献求助10
7秒前
西西完成签到,获得积分10
7秒前
qujinzhi完成签到 ,获得积分10
8秒前
亵渎完成签到,获得积分10
8秒前
苏苏发布了新的文献求助10
8秒前
Steve完成签到 ,获得积分10
9秒前
王云云完成签到 ,获得积分10
11秒前
12秒前
12秒前
13秒前
Ulrica发布了新的文献求助10
15秒前
汉堡包应助明亮寒安采纳,获得50
15秒前
16秒前
17秒前
18秒前
18秒前
烟花应助Lijunjie采纳,获得10
18秒前
酷炫依白完成签到,获得积分10
18秒前
科研靓仔发布了新的文献求助10
19秒前
Anais关注了科研通微信公众号
20秒前
Sicily发布了新的文献求助10
21秒前
lili完成签到,获得积分10
23秒前
雪白玲完成签到,获得积分20
23秒前
24秒前
刘耳朵发布了新的文献求助20
25秒前
fzh发布了新的文献求助10
26秒前
oops完成签到,获得积分10
26秒前
27秒前
兔兔应助Ulrica采纳,获得10
27秒前
闪闪的从彤完成签到 ,获得积分10
28秒前
Lijunjie完成签到,获得积分10
29秒前
有思想完成签到,获得积分10
29秒前
30秒前
阔达莫英发布了新的文献求助10
31秒前
Lijunjie发布了新的文献求助10
31秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140221
求助须知:如何正确求助?哪些是违规求助? 2791023
关于积分的说明 7797567
捐赠科研通 2447480
什么是DOI,文献DOI怎么找? 1301898
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194