A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks

计算机科学 无线 无线网络 资源配置 电信线路 计算机网络 基站 Wi-Fi阵列 选择算法 算法 机器学习 选择(遗传算法) 电信
作者
Mingzhe Chen,Zhaohui Yang,Walid Saad,Changchuan Yin,H. Vincent Poor,Shuguang Cui
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 269-283 被引量:1193
标识
DOI:10.1109/twc.2020.3024629
摘要

In this article, the problem of training federated learning (FL) algorithms over a realistic wireless network is studied. In the considered model, wireless users execute an FL algorithm while training their local FL models using their own data and transmitting the trained local FL models to a base station (BS) that generates a global FL model and sends the model back to the users. Since all training parameters are transmitted over wireless links, the quality of training is affected by wireless factors such as packet errors and the availability of wireless resources. Meanwhile, due to the limited wireless bandwidth, the BS needs to select an appropriate subset of users to execute the FL algorithm so as to build a global FL model accurately. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm. To seek the solution, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of wireless factors on FL. Then, based on the expected convergence rate of the FL algorithm, the optimal transmit power for each user is derived, under a given user selection and uplink resource block (RB) allocation scheme. Finally, the user selection and uplink RB allocation is optimized so as to minimize the FL loss function. Simulation results show that the proposed joint federated learning and communication framework can improve the identification accuracy by up to 1.4%, 3.5% and 4.1%, respectively, compared to: 1) An optimal user selection algorithm with random resource allocation, 2) a standard FL algorithm with random user selection and resource allocation, and 3) a wireless optimization algorithm that minimizes the sum packet error rates of all users while being agnostic to the FL parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tsq发布了新的文献求助10
2秒前
2秒前
复杂荟完成签到,获得积分10
2秒前
SciGPT应助木一旦采纳,获得30
2秒前
2秒前
徐哈哈完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
miemiemie完成签到,获得积分10
4秒前
5秒前
5秒前
完美世界应助溜溜采纳,获得10
6秒前
程晓研完成签到 ,获得积分10
6秒前
yiyi完成签到,获得积分10
7秒前
小羊发布了新的文献求助10
8秒前
先先完成签到 ,获得积分20
8秒前
8秒前
xty发布了新的文献求助10
9秒前
脑洞疼应助mengyijie2采纳,获得10
10秒前
小红薯发布了新的文献求助30
10秒前
10秒前
J卡卡K完成签到,获得积分10
11秒前
哇哈哈哈完成签到,获得积分10
11秒前
12秒前
12秒前
小王发布了新的文献求助10
12秒前
利物鸟贝拉完成签到,获得积分10
14秒前
xty完成签到,获得积分10
15秒前
花笙完成签到,获得积分10
15秒前
乐乐应助任性的皮皮虾采纳,获得10
15秒前
15秒前
15秒前
16秒前
参上完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
Xiaoab发布了新的文献求助10
17秒前
17秒前
桐桐应助王佳俊采纳,获得10
17秒前
时尚语梦完成签到 ,获得积分10
18秒前
微微发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601983
求助须知:如何正确求助?哪些是违规求助? 4011438
关于积分的说明 12419208
捐赠科研通 3691523
什么是DOI,文献DOI怎么找? 2035123
邀请新用户注册赠送积分活动 1068423
科研通“疑难数据库(出版商)”最低求助积分说明 952869