A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks

计算机科学 无线 无线网络 资源配置 电信线路 计算机网络 基站 Wi-Fi阵列 选择算法 算法 机器学习 选择(遗传算法) 电信
作者
Mingzhe Chen,Zhaohui Yang,Walid Saad,Changchuan Yin,H. Vincent Poor,Shuguang Cui
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 269-283 被引量:1193
标识
DOI:10.1109/twc.2020.3024629
摘要

In this article, the problem of training federated learning (FL) algorithms over a realistic wireless network is studied. In the considered model, wireless users execute an FL algorithm while training their local FL models using their own data and transmitting the trained local FL models to a base station (BS) that generates a global FL model and sends the model back to the users. Since all training parameters are transmitted over wireless links, the quality of training is affected by wireless factors such as packet errors and the availability of wireless resources. Meanwhile, due to the limited wireless bandwidth, the BS needs to select an appropriate subset of users to execute the FL algorithm so as to build a global FL model accurately. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm. To seek the solution, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of wireless factors on FL. Then, based on the expected convergence rate of the FL algorithm, the optimal transmit power for each user is derived, under a given user selection and uplink resource block (RB) allocation scheme. Finally, the user selection and uplink RB allocation is optimized so as to minimize the FL loss function. Simulation results show that the proposed joint federated learning and communication framework can improve the identification accuracy by up to 1.4%, 3.5% and 4.1%, respectively, compared to: 1) An optimal user selection algorithm with random resource allocation, 2) a standard FL algorithm with random user selection and resource allocation, and 3) a wireless optimization algorithm that minimizes the sum packet error rates of all users while being agnostic to the FL parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助LC采纳,获得10
1秒前
无极微光应助垃圾筐采纳,获得20
1秒前
秋梨膏完成签到 ,获得积分10
2秒前
2秒前
haifang发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
在水一方应助HHZ采纳,获得10
3秒前
3秒前
郭郭郭发布了新的文献求助10
4秒前
学术菜鸡123完成签到,获得积分10
4秒前
陈明健完成签到,获得积分10
4秒前
举人烧烤发布了新的文献求助10
4秒前
6秒前
6秒前
6秒前
7秒前
Bill发布了新的文献求助10
7秒前
dd发布了新的文献求助10
7秒前
852应助QAQ采纳,获得10
8秒前
lhm完成签到,获得积分10
8秒前
桐桐应助举人烧烤采纳,获得10
8秒前
田様应助HHZ采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
Yang发布了新的文献求助20
10秒前
12秒前
12秒前
12秒前
13秒前
外星人完成签到,获得积分10
13秒前
深情安青应助HHZ采纳,获得10
13秒前
顺心纸鹤发布了新的文献求助10
13秒前
13秒前
yangxs1995完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666454
求助须知:如何正确求助?哪些是违规求助? 4882107
关于积分的说明 15117498
捐赠科研通 4825502
什么是DOI,文献DOI怎么找? 2583441
邀请新用户注册赠送积分活动 1537599
关于科研通互助平台的介绍 1495756