Robust Power Allocation for Resource-Aware Multi-Target Tracking With Colocated MIMO Radars

信道状态信息 波束赋形 实时计算 雷达 稳健性(进化) 算法
作者
Ye Yuan,Wei Yi,Reza Hoseinnezhad,Pramod K. Varshney
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:69: 443-458 被引量:9
标识
DOI:10.1109/tsp.2020.3047519
摘要

Power allocation is an essential part of the design of colocated multiple-input and multiple-output (C-MIMO) radar systems for multi-target tracking (MTT). A widely adopted power allocation approach is to directly minimize the amount of allocated power while satisfying the desired performance for each tracked object so as to conserve the power resources. However, this approach may not lead to a satisfactory solution when the available power is not sufficient to achieve the desired performance for all the targets. To overcome the limitations of this approach, a robust power allocation (RPA) methodology is proposed in this paper based on the quality of service framework. At its core, the proposed RPA employs a task utility function that quantifies the tracking performance for different power allocations in a flexible manner. The Bayesian Cramer-Rao lower bound (BCRLB) is utilized to formulate the task utility function since it provides a lower bound on the accuracy of target state estimates. By using a set of weights to quantify the importance of different tracked objects, the objective function of RPA is modeled as the weighted sum of task utility functions. This formulation of the RPA problem is demonstrated to be a non-convex optimization problem in general. We show that the task utility function is unimodal. Based on the specific structure of the task utility function, we propose an iterative parallel search algorithm to find the solution. Numerical experiments involving scenarios with both sufficient and insufficient power resources demonstrate the robustness and efficiency of the proposed strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助xhsubdjj采纳,获得10
刚刚
Gengen完成签到 ,获得积分10
1秒前
杨y123完成签到,获得积分20
1秒前
1秒前
薛布慧完成签到 ,获得积分10
2秒前
科研通AI2S应助务实的犀牛采纳,获得10
2秒前
mengzhe发布了新的文献求助10
2秒前
3秒前
鹿晓狼发布了新的文献求助10
4秒前
4秒前
cocolu应助轩辕沛柔采纳,获得10
5秒前
5秒前
共享精神应助热情语柔采纳,获得10
6秒前
7秒前
木木发布了新的文献求助10
7秒前
烂漫季节发布了新的文献求助10
8秒前
explorer完成签到,获得积分20
8秒前
8秒前
塔恩沃特发布了新的文献求助10
8秒前
泽泽发布了新的文献求助10
9秒前
Jadon发布了新的文献求助10
9秒前
木易发布了新的文献求助10
11秒前
大个应助qq采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得30
12秒前
Akim应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
共享精神应助mengzhe采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
天天快乐应助1111采纳,获得10
13秒前
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
13秒前
潇潇雨歇应助科研通管家采纳,获得20
13秒前
ding应助科研通管家采纳,获得10
13秒前
邱半仙发布了新的文献求助30
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490684
求助须知:如何正确求助?哪些是违规求助? 3077465
关于积分的说明 9148997
捐赠科研通 2769686
什么是DOI,文献DOI怎么找? 1519873
邀请新用户注册赠送积分活动 704375
科研通“疑难数据库(出版商)”最低求助积分说明 702135