材料科学
阴极
涂层
单晶
图层(电子)
电化学
Crystal(编程语言)
电极
表层
化学工程
降级(电信)
分析化学(期刊)
复合材料
结晶学
电子工程
色谱法
工程类
物理化学
化学
程序设计语言
计算机科学
作者
Guangxin Li,Longzhen You,Ya Wen,Congcong Zhang,Ben Huang,Binbin Chu,Jian Wu,Tao Huang,Aishui Yu
标识
DOI:10.1021/acsami.0c22356
摘要
Single-crystal LiNi1–x–yCoxMnyO2 cathode materials can effectively suppress intergranular cracks that usually is seen in commercial polycrystal LiNi1–x–yCoxMnyO2 cathode materials. However, the surface structure degradation for single-crystal LiNi1–x–yCoxMnyO2 cathode materials is still aggravated at a higher cutoff voltage (over 4.5 V). In this work, we prepare single-crystal LiNi0.6Co0.2Mn0.2O2 cathode materials via a solid-state method and then coat an ultrathin Li–Si–O layer on their surface by a wet coating method. The results show that the single-crystal LiNi0.6Co0.2Mn0.2O2 cathode materials with a Li–Si–O coating layer deliver excellent cycling performance even at a higher cutoff voltage of 4.5 V. The optimized Li–Si–O-modified sample displays a capacity retention of 90.6% after 100 cycles, whereas only 68.0% for unmodified single-crystal LiNi0.6Co0.2Mn0.2O2. Further analysis of the cycled electrodes reveals that the surface structure degradation is the main reason for the decrease of electrochemical performance of single-crystal LiNi0.6Co0.2Mn0.2O2 at a high voltage (4.5 V). In contrast, with Li–Si–O coating, this phenomenon can be suppressed effectively to maintain interfacial stability and prolong the cycling life.
科研通智能强力驱动
Strongly Powered by AbleSci AI