清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automated wireless monitoring system for cable tension forces using deep learning

张力(地质) 无线 振动 计算机科学 工程类 结构工程 电信 声学 物理 经典力学 力矩(物理)
作者
Seunghoo Jeong,Hyunjun Kim,Junhwa Lee,Sung‐Han Sim
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (4): 1805-1821 被引量:28
标识
DOI:10.1177/1475921720935837
摘要

As demand for long-span bridges is increasing worldwide, effective maintenance has become a critical issue to maintain their structural integrity and prolong their lifetime. Given that a stay-cable is the principal load-carrying component in cable-stayed bridges, monitoring tension forces in stay-cables provides critical data regarding the structural condition of bridges. Indeed, various methodologies have been proposed to measure cable tension forces, including the magneto-elastic effect-based sensor technique, direct measurement using load cells, and indirect tension estimation based on cable vibration. In particular, vibration-based tension estimation has been widely applied to systems for tension monitoring and is known as a cost-effective approach. However, full automation under different cable tension forces has not been reported in the literature thus far. This study proposes an automated cable tension monitoring system using deep learning and wireless smart sensors that enables tension forces to be estimated. A fully automated peak-picking algorithm tailored to cable vibration is developed using a region-based convolution neural network to apply the vibration-based tension estimation method to automated cable tension monitoring. The developed system features embedded processing on wireless smart sensors, which includes data acquisition, power spectral density calculation, peak-picking, post-processing for peak-selection, and tension estimation. A series of laboratory and field tests are conducted on a cable to validate the performance of the proposed automated monitoring system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨曦完成签到 ,获得积分10
3秒前
研友_8WbVOZ完成签到,获得积分10
13秒前
xiaobai123456应助科研通管家采纳,获得50
13秒前
秋秋完成签到 ,获得积分10
16秒前
会写日记的乌龟先生完成签到 ,获得积分10
18秒前
悄悄完成签到 ,获得积分10
26秒前
TL完成签到 ,获得积分10
27秒前
carl完成签到,获得积分10
28秒前
回忆应助朱鑫汗采纳,获得10
28秒前
害怕的冰颜完成签到 ,获得积分10
46秒前
追梦完成签到,获得积分10
54秒前
小小咸鱼完成签到 ,获得积分10
55秒前
陈A完成签到 ,获得积分10
1分钟前
秋夜临完成签到,获得积分0
1分钟前
跳跃的鹏飞完成签到 ,获得积分0
1分钟前
海英完成签到,获得积分10
1分钟前
luobote完成签到 ,获得积分10
1分钟前
吕佳完成签到 ,获得积分10
1分钟前
限量版小祸害完成签到 ,获得积分10
1分钟前
qiqi完成签到,获得积分10
1分钟前
1分钟前
我是老大应助Joy采纳,获得10
1分钟前
qiqiqiqiqi完成签到 ,获得积分10
1分钟前
Singularity完成签到,获得积分0
1分钟前
早睡早起身体好Q完成签到 ,获得积分10
2分钟前
沉静香氛完成签到 ,获得积分10
2分钟前
naczx完成签到,获得积分0
2分钟前
李志全完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
xgx984完成签到,获得积分10
2分钟前
共享精神应助keke采纳,获得10
2分钟前
Nene完成签到 ,获得积分10
2分钟前
ChatGPT完成签到,获得积分10
2分钟前
大模型应助Zhuyin采纳,获得10
2分钟前
2分钟前
MoodMeed完成签到,获得积分10
2分钟前
2分钟前
Joy发布了新的文献求助10
2分钟前
keke发布了新的文献求助10
2分钟前
顺利问玉完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612035
求助须知:如何正确求助?哪些是违规求助? 4696186
关于积分的说明 14890583
捐赠科研通 4731071
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473310