已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated wireless monitoring system for cable tension forces using deep learning

张力(地质) 无线 振动 计算机科学 工程类 结构工程 电信 声学 经典力学 物理 力矩(物理)
作者
Seunghoo Jeong,Hyunjun Kim,Junhwa Lee,Sung‐Han Sim
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:20 (4): 1805-1821 被引量:28
标识
DOI:10.1177/1475921720935837
摘要

As demand for long-span bridges is increasing worldwide, effective maintenance has become a critical issue to maintain their structural integrity and prolong their lifetime. Given that a stay-cable is the principal load-carrying component in cable-stayed bridges, monitoring tension forces in stay-cables provides critical data regarding the structural condition of bridges. Indeed, various methodologies have been proposed to measure cable tension forces, including the magneto-elastic effect-based sensor technique, direct measurement using load cells, and indirect tension estimation based on cable vibration. In particular, vibration-based tension estimation has been widely applied to systems for tension monitoring and is known as a cost-effective approach. However, full automation under different cable tension forces has not been reported in the literature thus far. This study proposes an automated cable tension monitoring system using deep learning and wireless smart sensors that enables tension forces to be estimated. A fully automated peak-picking algorithm tailored to cable vibration is developed using a region-based convolution neural network to apply the vibration-based tension estimation method to automated cable tension monitoring. The developed system features embedded processing on wireless smart sensors, which includes data acquisition, power spectral density calculation, peak-picking, post-processing for peak-selection, and tension estimation. A series of laboratory and field tests are conducted on a cable to validate the performance of the proposed automated monitoring system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
czb666发布了新的文献求助10
2秒前
吃的饭广泛应助boyue采纳,获得10
3秒前
ED应助王小嘻采纳,获得10
4秒前
8秒前
缥缈的灵凡完成签到 ,获得积分10
8秒前
10秒前
吕绪特发布了新的文献求助10
15秒前
15秒前
lyy完成签到 ,获得积分10
18秒前
21秒前
22秒前
友好的储发布了新的文献求助10
25秒前
过时的白曼完成签到,获得积分10
25秒前
FashionBoy应助mianmianyu采纳,获得10
26秒前
糟糕的铁锤举报王明慧求助涉嫌违规
26秒前
xnz完成签到,获得积分20
27秒前
27秒前
贾克斯发布了新的文献求助10
29秒前
31秒前
tong发布了新的文献求助50
32秒前
自由的雁完成签到 ,获得积分10
34秒前
我是老大应助123456采纳,获得10
36秒前
36秒前
ding应助科研进化中采纳,获得10
38秒前
奋斗的雅柔完成签到,获得积分20
39秒前
39秒前
41秒前
桐桐应助贾克斯采纳,获得10
43秒前
思源应助牛牛眉目采纳,获得10
44秒前
yangyajie发布了新的文献求助10
44秒前
dsdsd发布了新的文献求助10
44秒前
45秒前
海贼学术完成签到 ,获得积分10
47秒前
小蘑菇应助科研通管家采纳,获得10
49秒前
脑洞疼应助科研通管家采纳,获得10
49秒前
大个应助科研通管家采纳,获得10
49秒前
FIN应助科研通管家采纳,获得10
49秒前
FIN应助科研通管家采纳,获得10
49秒前
49秒前
49秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965451
求助须知:如何正确求助?哪些是违规求助? 3510727
关于积分的说明 11154880
捐赠科研通 3245180
什么是DOI,文献DOI怎么找? 1792779
邀请新用户注册赠送积分活动 874088
科研通“疑难数据库(出版商)”最低求助积分说明 804168