Automated wireless monitoring system for cable tension forces using deep learning

张力(地质) 无线 振动 计算机科学 工程类 结构工程 电信 声学 物理 经典力学 力矩(物理)
作者
Seunghoo Jeong,Hyunjun Kim,Junhwa Lee,Sung‐Han Sim
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (4): 1805-1821 被引量:28
标识
DOI:10.1177/1475921720935837
摘要

As demand for long-span bridges is increasing worldwide, effective maintenance has become a critical issue to maintain their structural integrity and prolong their lifetime. Given that a stay-cable is the principal load-carrying component in cable-stayed bridges, monitoring tension forces in stay-cables provides critical data regarding the structural condition of bridges. Indeed, various methodologies have been proposed to measure cable tension forces, including the magneto-elastic effect-based sensor technique, direct measurement using load cells, and indirect tension estimation based on cable vibration. In particular, vibration-based tension estimation has been widely applied to systems for tension monitoring and is known as a cost-effective approach. However, full automation under different cable tension forces has not been reported in the literature thus far. This study proposes an automated cable tension monitoring system using deep learning and wireless smart sensors that enables tension forces to be estimated. A fully automated peak-picking algorithm tailored to cable vibration is developed using a region-based convolution neural network to apply the vibration-based tension estimation method to automated cable tension monitoring. The developed system features embedded processing on wireless smart sensors, which includes data acquisition, power spectral density calculation, peak-picking, post-processing for peak-selection, and tension estimation. A series of laboratory and field tests are conducted on a cable to validate the performance of the proposed automated monitoring system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hanhanhan发布了新的文献求助30
刚刚
zha州发布了新的文献求助10
刚刚
ontheway发布了新的文献求助10
刚刚
LeeFY应助kk采纳,获得10
刚刚
小蘑菇发布了新的文献求助20
刚刚
刚刚
萝卜_赞完成签到,获得积分10
1秒前
冷月寒寒大魔王给冷月寒寒大魔王的求助进行了留言
1秒前
南宫清涟应助ZZH采纳,获得10
2秒前
2秒前
cooling发布了新的文献求助10
2秒前
Ava应助Mia采纳,获得10
2秒前
Dream发布了新的文献求助10
2秒前
syy080837发布了新的文献求助10
2秒前
3秒前
斯文败类应助光亮绮山采纳,获得10
3秒前
只然完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
邓佳鑫Alan应助岁城采纳,获得10
4秒前
焦大大完成签到,获得积分10
4秒前
嘿休休发布了新的文献求助10
4秒前
所所应助1111采纳,获得10
4秒前
5秒前
阔达代芹发布了新的文献求助10
5秒前
华仔应助王大力采纳,获得10
5秒前
zgw发布了新的文献求助10
5秒前
椰椰豆沙应助ctttt采纳,获得10
6秒前
111完成签到 ,获得积分10
6秒前
6秒前
敬之发布了新的文献求助10
6秒前
yk完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
周小鱼发布了新的文献求助10
8秒前
善学以致用应助整齐的刚采纳,获得10
8秒前
Susco发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482