Automated wireless monitoring system for cable tension forces using deep learning

张力(地质) 无线 振动 计算机科学 工程类 结构工程 电信 声学 物理 经典力学 力矩(物理)
作者
Seunghoo Jeong,Hyunjun Kim,Junhwa Lee,Sung‐Han Sim
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (4): 1805-1821 被引量:28
标识
DOI:10.1177/1475921720935837
摘要

As demand for long-span bridges is increasing worldwide, effective maintenance has become a critical issue to maintain their structural integrity and prolong their lifetime. Given that a stay-cable is the principal load-carrying component in cable-stayed bridges, monitoring tension forces in stay-cables provides critical data regarding the structural condition of bridges. Indeed, various methodologies have been proposed to measure cable tension forces, including the magneto-elastic effect-based sensor technique, direct measurement using load cells, and indirect tension estimation based on cable vibration. In particular, vibration-based tension estimation has been widely applied to systems for tension monitoring and is known as a cost-effective approach. However, full automation under different cable tension forces has not been reported in the literature thus far. This study proposes an automated cable tension monitoring system using deep learning and wireless smart sensors that enables tension forces to be estimated. A fully automated peak-picking algorithm tailored to cable vibration is developed using a region-based convolution neural network to apply the vibration-based tension estimation method to automated cable tension monitoring. The developed system features embedded processing on wireless smart sensors, which includes data acquisition, power spectral density calculation, peak-picking, post-processing for peak-selection, and tension estimation. A series of laboratory and field tests are conducted on a cable to validate the performance of the proposed automated monitoring system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助Lolo采纳,获得10
刚刚
墨123发布了新的文献求助10
1秒前
打发打发的发到付电费完成签到 ,获得积分10
1秒前
Aurora发布了新的文献求助10
2秒前
岑岑岑完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
仁者发布了新的文献求助20
4秒前
4秒前
现实的白猫完成签到,获得积分20
7秒前
8秒前
Muzz发布了新的文献求助10
9秒前
XMH发布了新的文献求助10
10秒前
隐形曼青应助优美紫槐采纳,获得10
10秒前
科目三应助Lendar采纳,获得10
10秒前
彭于晏应助过时的棒棒糖采纳,获得100
11秒前
qhtwld发布了新的文献求助10
15秒前
17秒前
20秒前
lalala完成签到,获得积分10
21秒前
ddd完成签到,获得积分10
21秒前
22秒前
无花果应助1526918042采纳,获得10
22秒前
22秒前
笋笋完成签到,获得积分10
23秒前
Owen应助南枝焙雪采纳,获得10
23秒前
踌躇前半生完成签到,获得积分10
23秒前
psylan完成签到,获得积分10
23秒前
Magic麦发布了新的文献求助10
24秒前
科研闲人完成签到,获得积分10
24秒前
25秒前
Harlotte发布了新的文献求助10
25秒前
能干冰露完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606214
求助须知:如何正确求助?哪些是违规求助? 4690656
关于积分的说明 14864955
捐赠科研通 4704298
什么是DOI,文献DOI怎么找? 2542488
邀请新用户注册赠送积分活动 1508024
关于科研通互助平台的介绍 1472232