已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated wireless monitoring system for cable tension forces using deep learning

张力(地质) 无线 振动 计算机科学 工程类 结构工程 电信 声学 物理 经典力学 力矩(物理)
作者
Seunghoo Jeong,Hyunjun Kim,Junhwa Lee,Sung‐Han Sim
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (4): 1805-1821 被引量:28
标识
DOI:10.1177/1475921720935837
摘要

As demand for long-span bridges is increasing worldwide, effective maintenance has become a critical issue to maintain their structural integrity and prolong their lifetime. Given that a stay-cable is the principal load-carrying component in cable-stayed bridges, monitoring tension forces in stay-cables provides critical data regarding the structural condition of bridges. Indeed, various methodologies have been proposed to measure cable tension forces, including the magneto-elastic effect-based sensor technique, direct measurement using load cells, and indirect tension estimation based on cable vibration. In particular, vibration-based tension estimation has been widely applied to systems for tension monitoring and is known as a cost-effective approach. However, full automation under different cable tension forces has not been reported in the literature thus far. This study proposes an automated cable tension monitoring system using deep learning and wireless smart sensors that enables tension forces to be estimated. A fully automated peak-picking algorithm tailored to cable vibration is developed using a region-based convolution neural network to apply the vibration-based tension estimation method to automated cable tension monitoring. The developed system features embedded processing on wireless smart sensors, which includes data acquisition, power spectral density calculation, peak-picking, post-processing for peak-selection, and tension estimation. A series of laboratory and field tests are conducted on a cable to validate the performance of the proposed automated monitoring system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助Bai采纳,获得10
2秒前
hao发布了新的文献求助10
2秒前
万能图书馆应助钙钛矿狗采纳,获得10
3秒前
刘刘完成签到 ,获得积分10
8秒前
9秒前
陈chen发布了新的文献求助10
9秒前
想毕业的猫猫完成签到,获得积分10
10秒前
yyds应助hao采纳,获得50
11秒前
wanci应助我又可以了采纳,获得30
12秒前
orixero应助XLT采纳,获得10
13秒前
拼搏映菡发布了新的文献求助10
15秒前
15秒前
18秒前
cyt9999发布了新的文献求助10
18秒前
hehe发布了新的文献求助10
18秒前
19秒前
科研通AI6应助janie采纳,获得10
19秒前
华仔应助janie采纳,获得10
19秒前
21秒前
Liz发布了新的文献求助10
23秒前
26秒前
abab完成签到 ,获得积分10
30秒前
30秒前
30秒前
安详的海风完成签到,获得积分10
32秒前
34秒前
天天快乐应助科研通管家采纳,获得30
35秒前
35秒前
ding应助科研通管家采纳,获得10
35秒前
Hello应助科研通管家采纳,获得10
35秒前
情怀应助科研通管家采纳,获得10
35秒前
隐形曼青应助科研通管家采纳,获得10
35秒前
Ava应助科研通管家采纳,获得10
35秒前
123456发布了新的文献求助10
35秒前
35秒前
深情安青应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
36秒前
FashionBoy应助科研通管家采纳,获得10
36秒前
酷波er应助科研通管家采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627439
求助须知:如何正确求助?哪些是违规求助? 4713759
关于积分的说明 14962257
捐赠科研通 4784702
什么是DOI,文献DOI怎么找? 2554869
邀请新用户注册赠送积分活动 1516352
关于科研通互助平台的介绍 1476696