亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated wireless monitoring system for cable tension forces using deep learning

张力(地质) 无线 振动 计算机科学 工程类 结构工程 电信 声学 物理 经典力学 力矩(物理)
作者
Seunghoo Jeong,Hyunjun Kim,Junhwa Lee,Sung‐Han Sim
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (4): 1805-1821 被引量:28
标识
DOI:10.1177/1475921720935837
摘要

As demand for long-span bridges is increasing worldwide, effective maintenance has become a critical issue to maintain their structural integrity and prolong their lifetime. Given that a stay-cable is the principal load-carrying component in cable-stayed bridges, monitoring tension forces in stay-cables provides critical data regarding the structural condition of bridges. Indeed, various methodologies have been proposed to measure cable tension forces, including the magneto-elastic effect-based sensor technique, direct measurement using load cells, and indirect tension estimation based on cable vibration. In particular, vibration-based tension estimation has been widely applied to systems for tension monitoring and is known as a cost-effective approach. However, full automation under different cable tension forces has not been reported in the literature thus far. This study proposes an automated cable tension monitoring system using deep learning and wireless smart sensors that enables tension forces to be estimated. A fully automated peak-picking algorithm tailored to cable vibration is developed using a region-based convolution neural network to apply the vibration-based tension estimation method to automated cable tension monitoring. The developed system features embedded processing on wireless smart sensors, which includes data acquisition, power spectral density calculation, peak-picking, post-processing for peak-selection, and tension estimation. A series of laboratory and field tests are conducted on a cable to validate the performance of the proposed automated monitoring system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助小飞采纳,获得10
2秒前
HZ完成签到,获得积分10
5秒前
5秒前
promise完成签到 ,获得积分10
6秒前
湘崽丫完成签到 ,获得积分10
10秒前
linshaoyu完成签到 ,获得积分10
12秒前
刘佳完成签到,获得积分20
15秒前
22秒前
123123发布了新的文献求助10
28秒前
无花果应助Juse332采纳,获得10
29秒前
30秒前
爱思考的小笨笨完成签到,获得积分10
34秒前
34秒前
35秒前
CQ发布了新的文献求助10
36秒前
36秒前
37秒前
Peppermint完成签到,获得积分10
37秒前
38秒前
38秒前
ShyerC完成签到,获得积分10
39秒前
cy0824完成签到 ,获得积分10
39秒前
39秒前
39秒前
39秒前
39秒前
小飞发布了新的文献求助10
39秒前
小飞发布了新的文献求助10
40秒前
40秒前
小飞发布了新的文献求助10
43秒前
小飞发布了新的文献求助10
43秒前
小飞发布了新的文献求助10
43秒前
小飞发布了新的文献求助10
43秒前
小飞发布了新的文献求助10
43秒前
小飞发布了新的文献求助10
43秒前
小飞发布了新的文献求助10
43秒前
小飞发布了新的文献求助10
43秒前
e麓绝尘完成签到 ,获得积分10
48秒前
50秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650633
求助须知:如何正确求助?哪些是违规求助? 4781144
关于积分的说明 15052447
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572317
邀请新用户注册赠送积分活动 1528474
关于科研通互助平台的介绍 1487332