Automated wireless monitoring system for cable tension forces using deep learning

张力(地质) 无线 振动 计算机科学 工程类 结构工程 电信 声学 物理 经典力学 力矩(物理)
作者
Seunghoo Jeong,Hyunjun Kim,Junhwa Lee,Sung‐Han Sim
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (4): 1805-1821 被引量:28
标识
DOI:10.1177/1475921720935837
摘要

As demand for long-span bridges is increasing worldwide, effective maintenance has become a critical issue to maintain their structural integrity and prolong their lifetime. Given that a stay-cable is the principal load-carrying component in cable-stayed bridges, monitoring tension forces in stay-cables provides critical data regarding the structural condition of bridges. Indeed, various methodologies have been proposed to measure cable tension forces, including the magneto-elastic effect-based sensor technique, direct measurement using load cells, and indirect tension estimation based on cable vibration. In particular, vibration-based tension estimation has been widely applied to systems for tension monitoring and is known as a cost-effective approach. However, full automation under different cable tension forces has not been reported in the literature thus far. This study proposes an automated cable tension monitoring system using deep learning and wireless smart sensors that enables tension forces to be estimated. A fully automated peak-picking algorithm tailored to cable vibration is developed using a region-based convolution neural network to apply the vibration-based tension estimation method to automated cable tension monitoring. The developed system features embedded processing on wireless smart sensors, which includes data acquisition, power spectral density calculation, peak-picking, post-processing for peak-selection, and tension estimation. A series of laboratory and field tests are conducted on a cable to validate the performance of the proposed automated monitoring system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿仔完成签到,获得积分10
刚刚
___赵发布了新的文献求助10
1秒前
茶米发布了新的文献求助10
2秒前
2秒前
科研通AI6应助内卷与外包采纳,获得10
7秒前
阿屁屁猪完成签到,获得积分10
7秒前
黄大完成签到,获得积分10
7秒前
冬冬完成签到,获得积分10
8秒前
hhhhhhhh发布了新的文献求助10
8秒前
9秒前
duoduo7发布了新的文献求助10
9秒前
Mic发布了新的文献求助10
9秒前
黑马王子发布了新的文献求助10
10秒前
12秒前
14秒前
tutou发布了新的文献求助10
16秒前
惊艳发布了新的文献求助20
16秒前
共享精神应助迷路的台灯采纳,获得10
16秒前
17秒前
烦恼全吴完成签到 ,获得积分10
17秒前
EnjieLin完成签到,获得积分10
17秒前
18秒前
Mic完成签到,获得积分10
19秒前
超级翰完成签到 ,获得积分10
19秒前
科研通AI2S应助sc采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
shuxi完成签到,获得积分10
21秒前
稳重晓亦完成签到,获得积分10
22秒前
wxyshare应助wv采纳,获得10
23秒前
zyx完成签到,获得积分10
24秒前
wsc应助无情南琴采纳,获得20
24秒前
25秒前
26秒前
斯文败类应助水下月采纳,获得10
26秒前
FashionBoy应助无聊采纳,获得10
26秒前
FashionBoy应助琳io采纳,获得10
26秒前
26秒前
科研通AI6应助duoduo7采纳,获得10
26秒前
虚拟的雪枫完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536782
求助须知:如何正确求助?哪些是违规求助? 4624440
关于积分的说明 14592026
捐赠科研通 4564913
什么是DOI,文献DOI怎么找? 2502020
邀请新用户注册赠送积分活动 1480820
关于科研通互助平台的介绍 1452003