Predicting response to immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker

医学 队列 肿瘤科 内科学 肺癌 生物标志物 免疫疗法 预测值 无线电技术 癌症 无容量 癌症研究 非小细胞肺癌 彭布罗利珠单抗 肿瘤微环境 化学 生物化学
作者
Bingxi He,Di Dong,She Yunlang,Caicun Zhou,Mengjie Fang,Yongbei Zhu,Henghui Zhang,Zhipei Huang,Tao Jiang,Jie Tian,Chang Chen
出处
期刊:Journal for ImmunoTherapy of Cancer [BMJ]
卷期号:8 (2): e000550-e000550 被引量:47
标识
DOI:10.1136/jitc-2020-000550
摘要

Background Tumor mutational burden (TMB) is a significant predictor of immune checkpoint inhibitors (ICIs) efficacy. This study investigated the correlation between deep learning radiomic biomarker and TMB, including its predictive value for ICIs treatment response in patients with advanced non-small-cell lung cancer (NSCLC). Methods CT images from 327 patients with TMB data (TMB median=6.067 mutations per megabase (range: 0 to 42.151)) were retrospectively collected and randomly divided into a training (n=236), validation (n=26), and test cohort (n=65). We used 3D-densenet to estimate the target tumor area, which used 1020 deep learning features to distinguish High-TMB from Low-TMB patients and establish the TMB radiomic biomarker (TMBRB). The TMBRB was developed in the training cohort combined with validation cohort and evaluated in the test cohort. The predictive value of TMBRB was assessed in a cohort of 123 NSCLC patients who had received ICIs (survival median=462 days (range: 16 to 1128)). Results TMBRB discriminated between High-TMB and Low-TMB patients in the training cohort (area under the curve (AUC): 0.85, 95% CI: 0.84 to 0.87))and test cohort (AUC: 0.81, 95% CI: 0.77 to 0.85). In this study, the predictive value of TMBRB was better than that of a histological subtype (AUC of training cohort: 0.75, 95% CI: 0.72 to 0.77; AUC of test cohort: 0.71, 95% CI: 0.66 to 0.76) or Radiomic model (AUC of training cohort: 0.75, 95% CI: 0.72 to 0.77; AUC of test cohort: 0.74, 95% CI: 0.69 to 0.79). When predicting immunotherapy efficacy, TMBRB divided patients into a high- and low-risk group with distinctly different overall survival (OS; HR: 0.54, 95% CI: 0.31 to 0.95; p=0.030) and progression-free survival (PFS; HR: 1.78, 95% CI: 1.07 to 2.95; p=0.023). Moreover, TMBRB had a better predictive ability when combined with the Eastern Cooperative Oncology Group performance status (OS: p=0.007; PFS: p=0.003). Visual analysis revealed that tumor microenvironment was important for predicting TMB. Conclusion By combining deep learning technology and CT images, we developed an individual non-invasive biomarker that could distinguish High-TMB from Low-TMB, which might inform decisions on the use of ICIs in patients with advanced NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11111完成签到,获得积分10
1秒前
黄豆芽完成签到,获得积分20
2秒前
xlx发布了新的文献求助10
2秒前
诚心闭月完成签到,获得积分10
2秒前
3秒前
3秒前
小中完成签到,获得积分10
3秒前
Akim应助Jin采纳,获得10
3秒前
zyj完成签到,获得积分10
4秒前
MrFamous发布了新的文献求助10
4秒前
fxx2021完成签到,获得积分10
4秒前
lbx发布了新的文献求助10
4秒前
xqwwqx发布了新的文献求助10
5秒前
5秒前
5秒前
活力的妙之完成签到 ,获得积分10
5秒前
充电宝应助坚强乌龟采纳,获得10
5秒前
xhy发布了新的文献求助10
6秒前
kingwill给zinnia的求助进行了留言
6秒前
大胆夜绿发布了新的文献求助10
6秒前
传统的凝天完成签到,获得积分10
6秒前
7秒前
尼克的朱迪完成签到,获得积分10
7秒前
7秒前
大个应助谷大喵唔采纳,获得10
7秒前
23发布了新的文献求助10
7秒前
简单的铃铛完成签到 ,获得积分10
8秒前
8秒前
8秒前
科研通AI2S应助体贴啤酒采纳,获得10
8秒前
9秒前
大模型应助Water103采纳,获得10
9秒前
10秒前
儒雅沛凝发布了新的文献求助10
10秒前
10秒前
DXXX发布了新的文献求助10
11秒前
小不溜完成签到 ,获得积分10
11秒前
王汉韬发布了新的文献求助10
11秒前
科研通AI2S应助咕噜仔采纳,获得20
11秒前
11111111完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672