Predicting response to immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker

医学 队列 肿瘤科 内科学 肺癌 生物标志物 免疫疗法 预测值 无线电技术 癌症 无容量 癌症研究 非小细胞肺癌 彭布罗利珠单抗 肿瘤微环境 化学 生物化学
作者
Bingxi He,Di Dong,She Yunlang,Caicun Zhou,Mengjie Fang,Yongbei Zhu,Henghui Zhang,Zhipei Huang,Tao Jiang,Jie Tian,Chang Chen
出处
期刊:Journal for ImmunoTherapy of Cancer [BMJ]
卷期号:8 (2): e000550-e000550 被引量:47
标识
DOI:10.1136/jitc-2020-000550
摘要

Background Tumor mutational burden (TMB) is a significant predictor of immune checkpoint inhibitors (ICIs) efficacy. This study investigated the correlation between deep learning radiomic biomarker and TMB, including its predictive value for ICIs treatment response in patients with advanced non-small-cell lung cancer (NSCLC). Methods CT images from 327 patients with TMB data (TMB median=6.067 mutations per megabase (range: 0 to 42.151)) were retrospectively collected and randomly divided into a training (n=236), validation (n=26), and test cohort (n=65). We used 3D-densenet to estimate the target tumor area, which used 1020 deep learning features to distinguish High-TMB from Low-TMB patients and establish the TMB radiomic biomarker (TMBRB). The TMBRB was developed in the training cohort combined with validation cohort and evaluated in the test cohort. The predictive value of TMBRB was assessed in a cohort of 123 NSCLC patients who had received ICIs (survival median=462 days (range: 16 to 1128)). Results TMBRB discriminated between High-TMB and Low-TMB patients in the training cohort (area under the curve (AUC): 0.85, 95% CI: 0.84 to 0.87))and test cohort (AUC: 0.81, 95% CI: 0.77 to 0.85). In this study, the predictive value of TMBRB was better than that of a histological subtype (AUC of training cohort: 0.75, 95% CI: 0.72 to 0.77; AUC of test cohort: 0.71, 95% CI: 0.66 to 0.76) or Radiomic model (AUC of training cohort: 0.75, 95% CI: 0.72 to 0.77; AUC of test cohort: 0.74, 95% CI: 0.69 to 0.79). When predicting immunotherapy efficacy, TMBRB divided patients into a high- and low-risk group with distinctly different overall survival (OS; HR: 0.54, 95% CI: 0.31 to 0.95; p=0.030) and progression-free survival (PFS; HR: 1.78, 95% CI: 1.07 to 2.95; p=0.023). Moreover, TMBRB had a better predictive ability when combined with the Eastern Cooperative Oncology Group performance status (OS: p=0.007; PFS: p=0.003). Visual analysis revealed that tumor microenvironment was important for predicting TMB. Conclusion By combining deep learning technology and CT images, we developed an individual non-invasive biomarker that could distinguish High-TMB from Low-TMB, which might inform decisions on the use of ICIs in patients with advanced NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
euphoria发布了新的文献求助10
刚刚
刚刚
Lucas应助飞快的访枫采纳,获得10
1秒前
carryxu发布了新的文献求助10
3秒前
dophin发布了新的文献求助10
6秒前
euphoria完成签到,获得积分10
6秒前
嗯哼应助yi采纳,获得20
7秒前
8秒前
9秒前
端庄青雪关注了科研通微信公众号
10秒前
汉堡包应助song采纳,获得10
10秒前
玻璃剑发布了新的文献求助10
11秒前
11秒前
红橙黄绿蓝靛紫111完成签到,获得积分10
12秒前
妮妮发布了新的文献求助10
13秒前
共享精神应助只与你采纳,获得10
16秒前
Dr.wang发布了新的文献求助10
16秒前
小郭呀完成签到,获得积分10
17秒前
18秒前
19秒前
20秒前
21秒前
小火锅发布了新的文献求助10
22秒前
dophin完成签到,获得积分10
22秒前
端庄青雪发布了新的文献求助10
23秒前
24秒前
CipherSage应助胡老六采纳,获得10
24秒前
24秒前
25秒前
26秒前
28秒前
发酱完成签到,获得积分10
28秒前
标致冰海发布了新的文献求助10
32秒前
只与你发布了新的文献求助10
32秒前
33秒前
claireeeeeek完成签到,获得积分10
33秒前
英姑应助西北孤傲的狼采纳,获得10
33秒前
Jasper应助飞快的访枫采纳,获得10
33秒前
shuang0116应助zhf采纳,获得10
35秒前
CodeCraft应助gyc采纳,获得10
38秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228046
求助须知:如何正确求助?哪些是违规求助? 2875959
关于积分的说明 8193272
捐赠科研通 2543114
什么是DOI,文献DOI怎么找? 1373502
科研通“疑难数据库(出版商)”最低求助积分说明 646781
邀请新用户注册赠送积分活动 621276