Raman spectroscopy and machine learning for biomedical applications: Alzheimer’s disease diagnosis based on the analysis of cerebrospinal fluid

脑脊液 拉曼光谱 疾病 人工智能 神经影像学 医学 阿尔茨海默病 诊断准确性 线性判别分析 病理 机器学习 计算机科学 内科学 物理 光学 精神科
作者
Elena Ryzhikova,Nicole M. Ralbovsky,Vitali Sikirzhytski,Oleksandr Kazakov,Lenka Halámková,Joseph F. Quinn,Earl A. Zimmerman,Igor K. Lednev
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:248: 119188-119188 被引量:49
标识
DOI:10.1016/j.saa.2020.119188
摘要

Current Alzheimer’s disease (AD) diagnostics is based on clinical assessments, imaging and neuropsychological tests that are efficient only at advanced stages of the disease. Early diagnosis of AD will provide decisive opportunities for preventive treatment and development of disease-modifying drugs. Cerebrospinal fluid (CSF) is in direct contact with the human brain, where the deadly pathological process of the disease occurs. As such, the CSF biochemical composition reflects specific changes associated with the disease and is therefore the most promising body fluid for AD diagnostic test development. Here, we describe a new method to diagnose AD based on CSF via near infrared (NIR) Raman spectroscopy in combination with machine learning analysis. Raman spectroscopy is capable of probing the entire biochemical composition of a biological fluid at once. It has great potential to detect small changes specific to AD, even at the earliest stages of pathogenesis. NIR Raman spectra were measured of CSF samples acquired from 21 patients diagnosed with AD and 16 healthy control (HC) subjects. Artificial neural networks (ANN) and support vector machine discriminant analysis (SVM-DA) statistical methods were used for differentiation purposes, with the most successful results allowing for the differentiation of AD and HC subjects with 84% sensitivity and specificity. Our classification models show high discriminative power, suggesting the method has a great potential for AD diagnostics. The reported Raman spectroscopic examination of CSF can complement current clinical tests, making early AD detection fast, accurate, and inexpensive. While this study shows promise using a small sample set, further method validation on a larger scale is required to indicate the true strength of the approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
TOM完成签到,获得积分10
2秒前
隐形曼青应助欣喜访旋采纳,获得10
3秒前
852应助Millie采纳,获得10
3秒前
龍Ryu完成签到,获得积分10
4秒前
内向凌兰发布了新的文献求助10
5秒前
伍秋望完成签到,获得积分10
5秒前
6秒前
7秒前
跳跃发布了新的文献求助10
8秒前
持卿应助宗磬采纳,获得20
8秒前
8秒前
花生油炒花生米完成签到 ,获得积分10
8秒前
Riki完成签到,获得积分10
10秒前
虚幻白玉发布了新的文献求助10
10秒前
德行天下完成签到,获得积分10
10秒前
Jenny应助lan采纳,获得10
11秒前
fztnh完成签到,获得积分10
11秒前
上官若男应助lyz666采纳,获得10
11秒前
顾念完成签到 ,获得积分10
11秒前
277发布了新的文献求助10
12秒前
小二郎应助GCD采纳,获得10
13秒前
hhhhhh完成签到 ,获得积分10
13秒前
甜味拾荒者完成签到,获得积分10
15秒前
小二郎应助BONBON采纳,获得10
15秒前
16秒前
charllie完成签到 ,获得积分10
16秒前
空禅yew完成签到,获得积分10
17秒前
坚强亦丝应助跳跃采纳,获得10
19秒前
英俊的铭应助cc采纳,获得10
19秒前
huangsan完成签到,获得积分10
19秒前
匹诺曹完成签到,获得积分10
19秒前
20秒前
华仔应助进取拼搏采纳,获得10
20秒前
21秒前
dingdong发布了新的文献求助10
21秒前
you完成签到 ,获得积分10
22秒前
qwf完成签到 ,获得积分10
22秒前
23秒前
万能图书馆应助一一采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808