Raman spectroscopy and machine learning for biomedical applications: Alzheimer’s disease diagnosis based on the analysis of cerebrospinal fluid

脑脊液 拉曼光谱 疾病 人工智能 神经影像学 医学 阿尔茨海默病 诊断准确性 线性判别分析 病理 机器学习 计算机科学 内科学 物理 光学 精神科
作者
Elena Ryzhikova,Nicole M. Ralbovsky,Vitali Sikirzhytski,Oleksandr Kazakov,Lenka Halámková,Joseph F. Quinn,Earl A. Zimmerman,Igor K. Lednev
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:248: 119188-119188 被引量:49
标识
DOI:10.1016/j.saa.2020.119188
摘要

Current Alzheimer’s disease (AD) diagnostics is based on clinical assessments, imaging and neuropsychological tests that are efficient only at advanced stages of the disease. Early diagnosis of AD will provide decisive opportunities for preventive treatment and development of disease-modifying drugs. Cerebrospinal fluid (CSF) is in direct contact with the human brain, where the deadly pathological process of the disease occurs. As such, the CSF biochemical composition reflects specific changes associated with the disease and is therefore the most promising body fluid for AD diagnostic test development. Here, we describe a new method to diagnose AD based on CSF via near infrared (NIR) Raman spectroscopy in combination with machine learning analysis. Raman spectroscopy is capable of probing the entire biochemical composition of a biological fluid at once. It has great potential to detect small changes specific to AD, even at the earliest stages of pathogenesis. NIR Raman spectra were measured of CSF samples acquired from 21 patients diagnosed with AD and 16 healthy control (HC) subjects. Artificial neural networks (ANN) and support vector machine discriminant analysis (SVM-DA) statistical methods were used for differentiation purposes, with the most successful results allowing for the differentiation of AD and HC subjects with 84% sensitivity and specificity. Our classification models show high discriminative power, suggesting the method has a great potential for AD diagnostics. The reported Raman spectroscopic examination of CSF can complement current clinical tests, making early AD detection fast, accurate, and inexpensive. While this study shows promise using a small sample set, further method validation on a larger scale is required to indicate the true strength of the approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ww发布了新的文献求助10
1秒前
欧阳完成签到,获得积分10
1秒前
星辰大海应助xmmm采纳,获得10
1秒前
3秒前
文静的立诚完成签到,获得积分10
4秒前
4秒前
坚强的星星完成签到,获得积分10
5秒前
泡芙发布了新的文献求助10
5秒前
欧阳发布了新的文献求助10
6秒前
喜宝发布了新的文献求助10
6秒前
san完成签到,获得积分10
7秒前
斯文百招完成签到 ,获得积分10
7秒前
小許要看文献完成签到,获得积分20
8秒前
9秒前
Dr.Liujun发布了新的文献求助10
9秒前
houxufeng发布了新的文献求助10
10秒前
良辰应助安好采纳,获得10
10秒前
10秒前
狂野忆文完成签到,获得积分10
10秒前
彭于晏应助小马哥采纳,获得10
10秒前
wjt完成签到,获得积分10
11秒前
过时的安蕾完成签到,获得积分10
11秒前
东方欲晓应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得30
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
东方欲晓应助科研通管家采纳,获得10
12秒前
苏蔚应助科研通管家采纳,获得10
12秒前
12秒前
天天快乐应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
Cape发布了新的文献求助10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302577
求助须知:如何正确求助?哪些是违规求助? 2936982
关于积分的说明 8479891
捐赠科研通 2610918
什么是DOI,文献DOI怎么找? 1425404
科研通“疑难数据库(出版商)”最低求助积分说明 662367
邀请新用户注册赠送积分活动 646729