Raman spectroscopy and machine learning for biomedical applications: Alzheimer’s disease diagnosis based on the analysis of cerebrospinal fluid

脑脊液 拉曼光谱 疾病 人工智能 神经影像学 医学 阿尔茨海默病 诊断准确性 线性判别分析 病理 机器学习 计算机科学 内科学 物理 光学 精神科
作者
Elena Ryzhikova,Nicole M. Ralbovsky,Vitali Sikirzhytski,Oleksandr Kazakov,Lenka Halámková,Joseph F. Quinn,Earl A. Zimmerman,Igor K. Lednev
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:248: 119188-119188 被引量:49
标识
DOI:10.1016/j.saa.2020.119188
摘要

Current Alzheimer’s disease (AD) diagnostics is based on clinical assessments, imaging and neuropsychological tests that are efficient only at advanced stages of the disease. Early diagnosis of AD will provide decisive opportunities for preventive treatment and development of disease-modifying drugs. Cerebrospinal fluid (CSF) is in direct contact with the human brain, where the deadly pathological process of the disease occurs. As such, the CSF biochemical composition reflects specific changes associated with the disease and is therefore the most promising body fluid for AD diagnostic test development. Here, we describe a new method to diagnose AD based on CSF via near infrared (NIR) Raman spectroscopy in combination with machine learning analysis. Raman spectroscopy is capable of probing the entire biochemical composition of a biological fluid at once. It has great potential to detect small changes specific to AD, even at the earliest stages of pathogenesis. NIR Raman spectra were measured of CSF samples acquired from 21 patients diagnosed with AD and 16 healthy control (HC) subjects. Artificial neural networks (ANN) and support vector machine discriminant analysis (SVM-DA) statistical methods were used for differentiation purposes, with the most successful results allowing for the differentiation of AD and HC subjects with 84% sensitivity and specificity. Our classification models show high discriminative power, suggesting the method has a great potential for AD diagnostics. The reported Raman spectroscopic examination of CSF can complement current clinical tests, making early AD detection fast, accurate, and inexpensive. While this study shows promise using a small sample set, further method validation on a larger scale is required to indicate the true strength of the approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mf关闭了mf文献求助
1秒前
1秒前
视野胤发布了新的文献求助10
1秒前
光锥完成签到,获得积分10
1秒前
李滢童发布了新的文献求助10
1秒前
完美世界应助研招采纳,获得10
1秒前
2秒前
2秒前
淀粉发布了新的文献求助10
2秒前
2秒前
美丽猫咪发布了新的文献求助10
3秒前
玉渡山发布了新的文献求助10
4秒前
科研通AI2S应助JC采纳,获得10
4秒前
zz完成签到,获得积分10
5秒前
Verano_4完成签到,获得积分10
5秒前
大模型应助发嗲的悟空采纳,获得10
6秒前
LHWR发布了新的文献求助10
6秒前
ashley325完成签到,获得积分10
6秒前
ding应助心杨采纳,获得10
7秒前
英姑应助执着梦山采纳,获得10
7秒前
grs发布了新的文献求助10
7秒前
光锥发布了新的文献求助10
8秒前
王琳发布了新的文献求助10
8秒前
9秒前
9秒前
小刘同学完成签到,获得积分10
9秒前
10秒前
chen完成签到,获得积分10
11秒前
12秒前
12秒前
Sky完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
ASA完成签到,获得积分10
14秒前
14秒前
sugar完成签到,获得积分10
15秒前
英姑应助123采纳,获得10
15秒前
16秒前
研招发布了新的文献求助10
16秒前
呜呜发布了新的文献求助10
17秒前
洁净思枫发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951189
求助须知:如何正确求助?哪些是违规求助? 3496538
关于积分的说明 11083082
捐赠科研通 3227010
什么是DOI,文献DOI怎么找? 1784166
邀请新用户注册赠送积分活动 868234
科研通“疑难数据库(出版商)”最低求助积分说明 801089