Dynamic response reconstruction for structural health monitoring using densely connected convolutional networks

计算机科学 块(置换群论) 卷积神经网络 特征(语言学) 噪音(视频) 情态动词 特征提取 辍学(神经网络) 模式识别(心理学) 人工智能 数据挖掘 机器学习 哲学 几何学 化学 高分子化学 图像(数学) 语言学 数学
作者
Gao Fan,Jun Li,Hong Hao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (4): 1373-1391 被引量:84
标识
DOI:10.1177/1475921720916881
摘要

This article proposes a novel dynamic response reconstruction approach for structural health monitoring using densely connected convolutional networks. Skip connection and dense block techniques are carefully applied in the designed network architecture, which greatly facilitates the information flow, and increases the training efficiency and accuracy of feature extraction and propagation with fewer parameters in the network. Sub-pixel shuffling and dropout techniques are used in the designed network and applied to reduce the computational demand and improve training efficiency. The network is trained in a supervised manner, where the input and output are the measurements of the available channels at response available locations and desired channels at response unavailable locations. The proposed densely connected convolutional networks automatically extract the high-level features of the input data and construct the complicated nonlinear relationship between the responses of available and desired locations. Experimental studies are conducted using the measured acceleration responses from Guangzhou New Television Tower to investigate the effects of the locations of available responses, the numbers of available and unavailable channels, and measurement noise. The results demonstrate that the proposed approach can accurately reconstruct the responses in both time and frequency domains with strong noise immunity. The reconstructed response is further used for modal identification to demonstrate the usability and accuracy of the reconstructed responses. The applicability of the proposed approach for structural health monitoring is further proved by the highly consistent modal parameters identified from the reconstructed and true responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助王珺采纳,获得10
刚刚
刚刚
shi发布了新的文献求助10
刚刚
1秒前
甜蜜英姑发布了新的文献求助10
1秒前
THFA发布了新的文献求助10
2秒前
科研通AI2S应助顺心白翠采纳,获得10
2秒前
3秒前
windy钟声完成签到,获得积分10
3秒前
cy完成签到 ,获得积分10
4秒前
阿昊发布了新的文献求助30
5秒前
Moonboss完成签到 ,获得积分10
5秒前
跳跳发布了新的文献求助10
5秒前
zyj123发布了新的文献求助10
5秒前
7秒前
完美世界应助lzx采纳,获得10
7秒前
7秒前
8秒前
tooty发布了新的文献求助20
9秒前
10秒前
huangrui发布了新的文献求助10
11秒前
Lifetour发布了新的文献求助10
12秒前
Ava应助碗碗采纳,获得30
13秒前
快乐科研发布了新的文献求助10
14秒前
科目三应助端庄如雪采纳,获得10
15秒前
coconut完成签到,获得积分10
15秒前
chloe完成签到,获得积分10
17秒前
HHEHK完成签到 ,获得积分10
18秒前
18秒前
21秒前
23秒前
的的墨发布了新的文献求助10
23秒前
脑洞疼应助炙热怀蝶采纳,获得10
24秒前
25秒前
25秒前
wanh完成签到 ,获得积分10
27秒前
胡天萌发布了新的文献求助10
28秒前
28秒前
Zn应助tooty采纳,获得20
28秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538545
求助须知:如何正确求助?哪些是违规求助? 3116302
关于积分的说明 9324585
捐赠科研通 2814070
什么是DOI,文献DOI怎么找? 1546471
邀请新用户注册赠送积分活动 720547
科研通“疑难数据库(出版商)”最低求助积分说明 712073