氨基酸
肽合成
化学
肽
巴纳斯
生物化学
合成生物学
蛋白酶
固相合成
重组DNA
组合化学
蛋白质生物合成
蛋白质工程
同种类的
酶
计算生物学
生物
物理
基因
热力学
核糖核酸
核糖核酸酶
作者
Nina Hartrampf,Azin Saebi,Mackenzie Poskus,Zachary P. Gates,Alex J. Callahan,Amanda E. Cowfer,Stephanie Hanna,Sarah Antilla,Carly K. Schissel,Anthony J. Quartararo,X. Ye,Alexander J. Mijalis,Mark D. Simon,Andrei Loas,S. Liu,Carsten Jessen,Thomas E. Nielsen,Bradley L. Pentelute
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2020-05-28
卷期号:368 (6494): 980-987
被引量:253
标识
DOI:10.1126/science.abb2491
摘要
Fully synthetic whole proteins in reach Solid-phase peptide synthesis of homogeneous peptides longer than about 50 amino acids has been a long-standing challenge because of inefficient coupling and side reactions. Hartrampf et al. used an automated chemistry platform to optimize fast-flow peptide synthesis and were able to produce fully synthetic single-domain proteins (see the Perspective by Proulx). The targets included proinsulin and enzymes such as barnase and a version of HIV-1 protease containing multiple noncanonical amino acids. Refolded peptides were nearly indistinguishable from recombinant proteins, and the synthesized enzymes had activity close to that of their ribosomally synthesized counterparts. This method will enable fast, on-demand synthesis of small proteins with a vastly expanded pool of precursor amino acids. Science , this issue p. 980 ; see also p. 941
科研通智能强力驱动
Strongly Powered by AbleSci AI