亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sleep apnea detection from a single-lead ECG signal with automatic feature-extraction through a modified LeNet-5 convolutional neural network

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 特征提取 睡眠呼吸暂停 多导睡眠图 深度学习 特征(语言学) 信号(编程语言) 人工神经网络 呼吸暂停 机器学习 医学 语言学 哲学 精神科 心脏病学 程序设计语言
作者
Tao Wang,Changhua Lu,Guohao Shen,Feng Hong
出处
期刊:PeerJ [PeerJ]
卷期号:7: e7731-e7731 被引量:144
标识
DOI:10.7717/peerj.7731
摘要

Sleep apnea (SA) is the most common respiratory sleep disorder, leading to some serious neurological and cardiovascular diseases if left untreated. The diagnosis of SA is traditionally made using Polysomnography (PSG). However, this method requires many electrodes and wires, as well as an expert to monitor the test. Several researchers have proposed instead using a single channel signal for SA diagnosis. Among these options, the ECG signal is one of the most physiologically relevant signals of SA occurrence, and one that can be easily recorded using a wearable device. However, existing ECG signal-based methods mainly use features (i.e. frequency domain, time domain, and other nonlinear features) acquired from ECG and its derived signals in order to construct the model. This requires researchers to have rich experience in ECG, which is not common. A convolutional neural network (CNN) is a kind of deep neural network that can automatically learn effective feature representation from training data and has been successfully applied in many fields. Meanwhile, most studies have not considered the impact of adjacent segments on SA detection. Therefore, in this study, we propose a modified LeNet-5 convolutional neural network with adjacent segments for SA detection. Our experimental results show that our proposed method is useful for SA detection, and achieves better or comparable results when compared with traditional machine learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
10秒前
空2完成签到 ,获得积分0
19秒前
叶也完成签到 ,获得积分10
44秒前
46秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
传奇3应助芒果瑞纳冰采纳,获得10
1分钟前
1分钟前
Chouvikin完成签到,获得积分10
1分钟前
1分钟前
桐夜完成签到 ,获得积分10
1分钟前
2分钟前
lqhccww发布了新的文献求助10
2分钟前
2分钟前
2分钟前
zilt1109发布了新的文献求助10
2分钟前
Orange应助龙06采纳,获得30
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
chenyue233完成签到,获得积分10
3分钟前
怪僻完成签到 ,获得积分10
3分钟前
郗妫完成签到 ,获得积分10
3分钟前
3分钟前
丘比特应助溜溜采纳,获得10
3分钟前
4分钟前
4分钟前
yxl要顺利毕业_发6篇C完成签到,获得积分10
4分钟前
4分钟前
天天快乐应助浮生六记采纳,获得10
4分钟前
5分钟前
5分钟前
溜溜发布了新的文献求助10
5分钟前
zsmj23完成签到 ,获得积分0
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509664
求助须知:如何正确求助?哪些是违规求助? 4604470
关于积分的说明 14489810
捐赠科研通 4539307
什么是DOI,文献DOI怎么找? 2487442
邀请新用户注册赠送积分活动 1469860
关于科研通互助平台的介绍 1442070