Sleep apnea detection from a single-lead ECG signal with automatic feature-extraction through a modified LeNet-5 convolutional neural network

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 特征提取 睡眠呼吸暂停 多导睡眠图 深度学习 特征(语言学) 信号(编程语言) 人工神经网络 呼吸暂停 机器学习 医学 哲学 程序设计语言 心脏病学 精神科 语言学
作者
Tao Wang,Changhua Lu,Guohao Shen,Feng Hong
出处
期刊:PeerJ [PeerJ]
卷期号:7: e7731-e7731 被引量:144
标识
DOI:10.7717/peerj.7731
摘要

Sleep apnea (SA) is the most common respiratory sleep disorder, leading to some serious neurological and cardiovascular diseases if left untreated. The diagnosis of SA is traditionally made using Polysomnography (PSG). However, this method requires many electrodes and wires, as well as an expert to monitor the test. Several researchers have proposed instead using a single channel signal for SA diagnosis. Among these options, the ECG signal is one of the most physiologically relevant signals of SA occurrence, and one that can be easily recorded using a wearable device. However, existing ECG signal-based methods mainly use features (i.e. frequency domain, time domain, and other nonlinear features) acquired from ECG and its derived signals in order to construct the model. This requires researchers to have rich experience in ECG, which is not common. A convolutional neural network (CNN) is a kind of deep neural network that can automatically learn effective feature representation from training data and has been successfully applied in many fields. Meanwhile, most studies have not considered the impact of adjacent segments on SA detection. Therefore, in this study, we propose a modified LeNet-5 convolutional neural network with adjacent segments for SA detection. Our experimental results show that our proposed method is useful for SA detection, and achieves better or comparable results when compared with traditional machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
5秒前
5秒前
6秒前
XPR发布了新的文献求助10
6秒前
8秒前
9秒前
晴雯完成签到,获得积分10
10秒前
li发布了新的文献求助10
10秒前
追寻夜白发布了新的文献求助30
10秒前
优雅的行云应助yy采纳,获得10
12秒前
13秒前
红岸完成签到,获得积分10
14秒前
CyberHamster完成签到,获得积分10
14秒前
一生所爱完成签到,获得积分10
14秒前
asd应助sqw采纳,获得10
15秒前
15秒前
16秒前
天天快乐应助whiteside采纳,获得10
16秒前
Beyond完成签到,获得积分10
18秒前
阿木木完成签到,获得积分10
18秒前
W29完成签到,获得积分10
19秒前
文献菜鸟发布了新的文献求助10
20秒前
科研小趴菜完成签到,获得积分10
20秒前
fz发布了新的文献求助10
21秒前
研友_VZG64n完成签到 ,获得积分10
22秒前
桂花完成签到 ,获得积分10
24秒前
25秒前
25秒前
过时的元风完成签到,获得积分20
27秒前
bkagyin应助fz采纳,获得10
28秒前
Suge6发布了新的文献求助20
28秒前
zbw发布了新的文献求助10
29秒前
30秒前
Richard完成签到 ,获得积分10
32秒前
123应助花凉采纳,获得20
32秒前
35秒前
周大聪明完成签到,获得积分10
35秒前
ym完成签到,获得积分10
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292382
求助须知:如何正确求助?哪些是违规求助? 2928703
关于积分的说明 8438278
捐赠科研通 2600816
什么是DOI,文献DOI怎么找? 1419277
科研通“疑难数据库(出版商)”最低求助积分说明 660268
邀请新用户注册赠送积分活动 642921