已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mass spectrometry‐based forest tree metabolomics

代谢组学 树(集合论) 元数据 互操作性 计算机科学 数据科学 化学 万维网 数学 色谱法 数学分析
作者
Ana Margarida Rodrigues,Celia María Gonzalo Miguel,Inês Chaves,Carla António
出处
期刊:Mass Spectrometry Reviews [Wiley]
卷期号:40 (2): 126-157 被引量:34
标识
DOI:10.1002/mas.21603
摘要

Research in forest tree species has advanced slowly when compared with other agricultural crops and model organisms, mainly due to the long-life cycles, large genome sizes, and lack of genomic tools. Additionally, trees are complex matrices, and the presence of interferents (e.g., oleoresins and cellulose) challenges the analysis of tree tissues with mass spectrometry (MS)-based analytical platforms. In this review, advances in MS-based forest tree metabolomics are discussed. Given their economic and ecological significance, particular focus is given to Pinus, Quercus, and Eucalyptus forest tree species to better understand their metabolite responses to abiotic and biotic stresses in the current climate change scenario. Furthermore, MS-based metabolomics technologies produce large and complex datasets that require expertize to adequately manage, process, analyze, and store the data in dedicated repositories. To ensure that the full potential of forest tree metabolomics data are translated into new knowledge, these data should comply with the FAIR principles (i.e., Findable, Accessible, Interoperable, and Re-usable). It is essential that adequate standards are implemented to annotate metadata from forest tree metabolomics studies as is already required by many science and governmental agencies and some major scientific publishers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev 40:126-157, 2021.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助可乐乐的可丫采纳,获得10
1秒前
2秒前
3秒前
容易烦关注了科研通微信公众号
4秒前
5秒前
QQWRV完成签到,获得积分10
5秒前
xdq发布了新的文献求助10
6秒前
LDD发布了新的文献求助10
7秒前
zayne完成签到 ,获得积分10
7秒前
GUGU发布了新的文献求助10
9秒前
油炸皮卡丘完成签到,获得积分10
10秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
wanci应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得30
13秒前
13秒前
General发布了新的文献求助10
14秒前
贵哥完成签到,获得积分10
17秒前
17秒前
18秒前
PENG应助lili采纳,获得10
20秒前
20秒前
李爱国应助Sophiaple采纳,获得10
20秒前
curtain发布了新的文献求助10
20秒前
cocolu应助风趣的冬卉采纳,获得50
21秒前
周冬利发布了新的文献求助10
22秒前
SYLH应助小小鱼采纳,获得10
23秒前
上弦月完成签到 ,获得积分10
24秒前
25秒前
26秒前
tpl完成签到,获得积分10
27秒前
28秒前
yy发布了新的文献求助10
28秒前
ding应助周冬利采纳,获得10
31秒前
清爽的如雪完成签到 ,获得积分10
31秒前
jayus完成签到,获得积分10
33秒前
葡萄干应助小小鱼采纳,获得30
34秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491136
求助须知:如何正确求助?哪些是违规求助? 3077792
关于积分的说明 9150450
捐赠科研通 2770267
什么是DOI,文献DOI怎么找? 1520222
邀请新用户注册赠送积分活动 704531
科研通“疑难数据库(出版商)”最低求助积分说明 702202