Modeling for the performance of navigation, control and data post-processing of underwater gliders

滑翔机 水下滑翔机 全球定位系统 海洋工程 背景(考古学) 计算机科学 工程类 地质学 电信 古生物学
作者
Mike Eichhorn,David Aragon,Yuri A.W. Shardt,Hugh Roarty
出处
期刊:Applied Ocean Research [Elsevier]
卷期号:101: 102191-102191 被引量:11
标识
DOI:10.1016/j.apor.2020.102191
摘要

Underwater gliders allow efficient monitoring in oceanography. In contrast to buoys, which log oceanographic data at individual depths at only one location, gliders can log data over a period of up to one year by following predetermined routes. In addition to the logged data from the available sensors, usually a conductivity-temperature-depth (CTD) sensor, the depth-average velocity can also be estimated using the horizontal glider velocity and the GPS update in a dead-reckoning algorithm. The horizontal velocity is also used for navigation or planning a long-term glider mission. This paper presents an investigation to determine the horizontal glider velocity as accurately as possible. For this, Slocum glider flight models used in practice will be presented and compared. A glider model for a steady-state gliding motion based on this analysis is described in detail. The approach for estimating the individual model parameters using nonlinear regression will be presented. In this context, a robust method to accurately detect the angle of attack is presented and the requirements of the logged vehicle data for statistically verified model parameters are discussed. The approaches are verified using logged data from glider missions in the Indian Ocean from 2016 to 2018. It is shown that a good match between the logged and the modeled data requires a time-varying model, where the model parameters change with respect to time. A reason for the changes is biofouling, where organisms settle and grow on the glider. The proposed method for deciphering an accurate horizontal glider velocity could serve to improve the dead-reckoning algorithm used by the glider for calculating depth-average velocity and for understanding its errors. The depth-average velocity is used to compare ocean current models from CMEMS and HYCOM with the glider logged data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李洁发布了新的文献求助10
1秒前
星辰大海应助呆崽采纳,获得10
2秒前
菜菜发布了新的文献求助10
2秒前
搞怪迎夏应助rayce采纳,获得10
2秒前
2秒前
满增明发布了新的文献求助10
2秒前
甜宝发布了新的文献求助30
2秒前
kiki发布了新的文献求助10
3秒前
3秒前
体谅WXF完成签到,获得积分10
3秒前
David关注了科研通微信公众号
3秒前
3秒前
3秒前
jim_hacker完成签到,获得积分10
4秒前
乐乐发布了新的文献求助10
4秒前
所所应助xuan采纳,获得10
4秒前
5秒前
冰夏完成签到,获得积分10
5秒前
5秒前
6秒前
Lucas应助科目三三次郎采纳,获得10
6秒前
单于思雁发布了新的文献求助10
7秒前
7秒前
Mark发布了新的文献求助10
7秒前
edsenone发布了新的文献求助10
7秒前
zxy发布了新的文献求助10
8秒前
8秒前
爆米花应助李洁采纳,获得10
8秒前
Lucas应助有缘采纳,获得10
8秒前
水池边发布了新的文献求助20
8秒前
Owen应助甜宝采纳,获得10
9秒前
Owen应助花花花花采纳,获得10
10秒前
10秒前
Lucas应助yi采纳,获得10
10秒前
11秒前
乐乐应助kiki采纳,获得10
11秒前
小欣发布了新的文献求助10
11秒前
青椒炒肉完成签到,获得积分10
11秒前
许家鑫发布了新的文献求助10
11秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217557
求助须知:如何正确求助?哪些是违规求助? 2866772
关于积分的说明 8153476
捐赠科研通 2533694
什么是DOI,文献DOI怎么找? 1366407
科研通“疑难数据库(出版商)”最低求助积分说明 644764
邀请新用户注册赠送积分活动 617731