清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning reservoir porosity prediction based on multilayer long short-term memory network

取心 计算机科学 一般化 多孔性 超参数 块(置换群论) 集合(抽象数据类型) 人工智能 试验装置 试验数据 人工神经网络 机器学习 数据挖掘 算法 钻探 数学 地质学 工程类 机械工程 数学分析 几何学 岩土工程 程序设计语言
作者
Wei Chen,Liuqing Yang,Bei Zha,Mi Zhang,Yangkang Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:85 (4): WA213-WA225 被引量:85
标识
DOI:10.1190/geo2019-0261.1
摘要

The cost of obtaining a complete porosity value using traditional coring methods is relatively high, and as the drilling depth increases, the difficulty of obtaining the porosity value also increases. Nowadays, the prediction of fine reservoir parameters for oil and gas exploration is becoming more and more important. Therefore, high-efficiency and low-cost prediction of porosity based on logging data is necessary. We have developed a machine-learning method based on the traditional long short-term memory (LSTM) model, called multilayer LSTM (MLSTM), to perform the porosity prediction task. We used three different wells in a block in southern China for the prediction task, including a training well and two test wells. One test well has the same logging data type as the training well, whereas the other test well differs from the training well in the logging depth and parameter types. Two different types of test data sets are used to detect the generalization ability of the network. A set of data was used to train the MLSTM network, and the hyperparameters of the network were adjusted through experimental accuracy feedback. We also tested the performance of the network using two sets of log data from different regions, including generalization and sensitivity of the network. During the training phase of the porosity prediction model, the developed MLSTM establishes a minimized objective function, uses the Adam optimization algorithm to update the weight of the network, and adjusts the network hyperparameters to select the best target according to the feedback of the network accuracy. Compared with conventional sequence neural networks, such as the gated recurrent unit and recurrent neural network, the logging data experiments show that MLSTM has better robustness and accuracy in depth sequence prediction. Especially, the porosity value at the depth inflection point can be better predicted when the trend of the depth sequence was predicted. This framework is expected to reduce the porosity prediction errors when data are insufficient and log depths are different.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chichenglin完成签到 ,获得积分0
7秒前
科研通AI2S应助jlwang采纳,获得10
9秒前
乐观的星月完成签到 ,获得积分10
13秒前
欣欣完成签到,获得积分10
32秒前
33秒前
欣欣发布了新的文献求助10
37秒前
45秒前
zz完成签到 ,获得积分10
45秒前
无语凝噎发布了新的文献求助10
50秒前
58秒前
无语凝噎完成签到,获得积分10
1分钟前
眯眯眼的安雁完成签到 ,获得积分10
1分钟前
任性翠安完成签到 ,获得积分10
1分钟前
X519664508完成签到,获得积分0
1分钟前
安安滴滴完成签到 ,获得积分10
1分钟前
清秀的怀蕊完成签到 ,获得积分0
1分钟前
邱威完成签到 ,获得积分10
1分钟前
nulll完成签到,获得积分10
2分钟前
MS903完成签到 ,获得积分10
2分钟前
3分钟前
CJW完成签到 ,获得积分10
3分钟前
DJ_Tokyo完成签到,获得积分10
3分钟前
lilaccalla完成签到 ,获得积分10
3分钟前
3分钟前
wowser完成签到,获得积分10
4分钟前
Yolenders完成签到 ,获得积分10
4分钟前
tufei完成签到,获得积分10
4分钟前
4分钟前
积极的中蓝完成签到 ,获得积分10
4分钟前
4分钟前
Alex-Song完成签到 ,获得积分0
4分钟前
4分钟前
5分钟前
Owen应助坚强的云朵采纳,获得10
5分钟前
Axs完成签到,获得积分10
5分钟前
badgerwithfisher完成签到,获得积分10
5分钟前
游01完成签到 ,获得积分10
5分钟前
lovexa完成签到,获得积分10
5分钟前
感性的神级完成签到,获得积分10
5分钟前
斯寜应助钱念波采纳,获得10
5分钟前
高分求助中
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
《上海道契1-30卷(1847—1911)》 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3705035
求助须知:如何正确求助?哪些是违规求助? 3254385
关于积分的说明 9888565
捐赠科研通 2966159
什么是DOI,文献DOI怎么找? 1626744
邀请新用户注册赠送积分活动 771150
科研通“疑难数据库(出版商)”最低求助积分说明 743190