🔥 科研通第二届『应助活动周』正在进行中,3月24-30日求助秒级响应🚀,千元现金等你拿。当前排名🏆 📚 中科院2025期刊分区📊 已更新

Identification of 5 Gene Signatures in Survival Prediction for Patients with Lung Squamous Cell Carcinoma Based on Integrated Multiomics Data Analysis

鉴定(生物学) 基底细胞 生存分析 病理 生物 计算生物学 肿瘤科 医学 内科学 植物
作者
Hongxia Ma,Lihong Tong,Qian Zhang,Wenjun Chang,Feng-Sen Li
出处
期刊:BioMed Research International [Hindawi Limited]
卷期号:2020: 1-19 被引量:9
标识
DOI:10.1155/2020/6427483
摘要

Lung squamous cell carcinoma (LSCC) is a frequently diagnosed cancer worldwide, and it has a poor prognosis. The current study is aimed at developing the prediction of LSCC prognosis by integrating multiomics data including transcriptome, copy number variation data, and mutation data analysis, so as to predict patients' survival and discover new therapeutic targets.RNASeq, SNP, CNV data, and LSCC patients' clinical follow-up information were downloaded from The Cancer Genome Atlas (TCGA), and the samples were randomly divided into two groups, namely, the training set and the validation set. In the training set, the genes related to prognosis and those with different copy numbers or with different SNPs were integrated to extract features using random forests, and finally, robust biomarkers were screened. In addition, a gene-related prognostic model was established and further verified in the test set and GEO validation set.We obtained a total of 804 prognostic-related genes and 535 copy amplification genes, 621 copy deletions genes, and 388 significantly mutated genes in genomic variants; noticeably, these genomic variant genes were found closely related to tumor development. A total of 51 candidate genes were obtained by integrating genomic variants and prognostic genes, and 5 characteristic genes (HIST1H2BH, SERPIND1, COL22A1, LCE3C, and ADAMTS17) were screened through random forest feature selection; we found that many of those genes had been reported to be related to LSCC progression. Cox regression analysis was performed to establish 5-gene signature that could serve as an independent prognostic factor for LSCC patients and can stratify risk samples in training set, test set, and external validation set (p < 0.01), and the 5-year survival areas under the curve (AUC) of both training set and validation set were > 0.67.In the current study, 5 gene signatures were constructed as novel prognostic markers to predict the survival of LSCC patients. The present findings provide new diagnostic and prognostic biomarkers and therapeutic targets for LSCC treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
应助活动周(3月24-30日)排名

10分钟更新一次,完整排名情况
实时播报
今天你学习了吗完成签到 ,获得积分10
1秒前
1秒前
ardejiang发布了新的文献求助10
1秒前
2秒前
大聪明发布了新的文献求助30
2秒前
张YI发布了新的文献求助10
2秒前
Ahmad_Farooq发布了新的文献求助10
2秒前
小蕾同学发布了新的文献求助10
3秒前
czl吃不饱完成签到,获得积分10
3秒前
方勇飞发布了新的文献求助10
3秒前
NexusExplorer应助doby采纳,获得10
3秒前
4秒前
4秒前
科研通AI5应助lifeboast采纳,获得10
4秒前
zho应助福建农林太学采纳,获得10
5秒前
NexusExplorer应助啦啦啦采纳,获得10
5秒前
科研通AI5应助溧子呀采纳,获得10
6秒前
6秒前
7秒前
7秒前
112233发布了新的文献求助10
7秒前
充电宝应助早发sci采纳,获得10
8秒前
8秒前
王小姚发布了新的文献求助10
8秒前
8秒前
demonhunter发布了新的文献求助10
9秒前
9秒前
燕燕完成签到,获得积分10
9秒前
9秒前
chuiji发布了新的文献求助10
10秒前
Dolin发布了新的文献求助10
10秒前
juana应助否极泰来采纳,获得10
10秒前
小透明应助Gilana采纳,获得50
11秒前
11秒前
ardejiang发布了新的文献求助10
12秒前
科研小民工应助Charming采纳,获得20
12秒前
可爱的函函应助qwerlyp采纳,获得10
12秒前
共享精神应助很好采纳,获得10
12秒前
12秒前
可爱的函函应助123456采纳,获得10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Continuum Thermodynamics and Material Modelling 2000
On Troodon validus, an orthopodous dinosaur from the Belly River Cretaceous of Alberta, Canada 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 化学工程 复合材料 基因 遗传学 催化作用 物理化学 细胞生物学 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3611079
求助须知:如何正确求助?哪些是违规求助? 3182693
关于积分的说明 9598491
捐赠科研通 2888820
什么是DOI,文献DOI怎么找? 1584556
邀请新用户注册赠送积分活动 745289
科研通“疑难数据库(出版商)”最低求助积分说明 727623