Strengthening and toughening mechanisms of Mg matrix composites reinforced with specific spatial arrangement of in-situ TiB2 nanoparticles

增韧 材料科学 复合材料 原位 纳米颗粒 基质(化学分析) 韧性 纳米技术 化学 有机化学
作者
Peng Xiao,Yimin Gao,Cuicui Yang,Yefei Li,Xiaoyu Huang,Qingkun Liu,Zhao Siyong,Feixing Xu,Manoj Gupta
出处
期刊:Composites Part B-engineering [Elsevier]
卷期号:198: 108174-108174 被引量:55
标识
DOI:10.1016/j.compositesb.2020.108174
摘要

Abstract To improve the strength and toughness of Mg matrix composites, we propose a novel strategy to successfully develop Mg matrix composites reinforced with alternating fiber-like nanoparticle-rich (NPR) zones. A combination of in-situ casting and hot thermomechanical processing approach is employed to achieve this unique microstructure, and the influence of spatial arrangement of TiB2 nanoparticles on the microstructure, mechanical behavior, strengthening and toughening mechanisms are investigated in detail. The results show that the designed nanocomposite exhibits alternative fiber-like NPR zones and nanoparticle-free (NPF) zones, leading to the typical bimodal structure. Meanwhile, EBSD analyses reveal that the fiber-like NPR zones have much higher density of geometrically necessary dislocations than NPF zones. Accordingly, the hardness and elastic modulus in fiber-like NPR zones are enhanced significantly, acting as “hard” units, while NPF zones with high plasticity factor acting as “soft” regions. As a consequence, superior combination of tensile strength (388 MPa) and ductility (10.1%) is realized in TiB2/AZ91 nanocomposite when compared to AZ91 matrix. The strengthening mechanisms of the nanocomposite are evaluated quantitatively, and found that the fiber-like arrays significantly enhanced the load-bearing capacity of TiB2 nanoparticles. Moreover, grains in NPF zones can deform easily, acting as strain bearing soft units, coupling with cracks deflection caused by the “hard” NPR zones, both of which are responsible for toughening nanocomposite.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊羊发布了新的文献求助10
1秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
刘雨应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
4秒前
Nacies应助科研通管家采纳,获得100
4秒前
Hello应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
cc应助科研通管家采纳,获得20
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
8秒前
封尘逸动完成签到,获得积分10
9秒前
诚心绿兰完成签到 ,获得积分10
9秒前
磊磊磊发布了新的文献求助30
9秒前
12秒前
13秒前
沉默的港湾完成签到,获得积分10
13秒前
迷宫左零完成签到,获得积分10
14秒前
穗禾发布了新的文献求助10
15秒前
怡然的沁发布了新的文献求助50
16秒前
LuoYixiang发布了新的文献求助10
17秒前
3135737357完成签到,获得积分10
17秒前
super.Q发布了新的文献求助10
17秒前
Sunny完成签到 ,获得积分10
17秒前
17秒前
万能图书馆应助羊羊采纳,获得10
18秒前
迷宫左零发布了新的文献求助10
19秒前
北斗星完成签到,获得积分10
22秒前
苹果完成签到,获得积分10
25秒前
jin发布了新的文献求助10
28秒前
jiangcai完成签到,获得积分10
28秒前
在水一方应助玩命的凝天采纳,获得10
28秒前
zq00完成签到,获得积分10
34秒前
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1200
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3363778
求助须知:如何正确求助?哪些是违规求助? 2984993
关于积分的说明 8715813
捐赠科研通 2667118
什么是DOI,文献DOI怎么找? 1460695
科研通“疑难数据库(出版商)”最低求助积分说明 675971
邀请新用户注册赠送积分活动 667318