Strengthening and toughening mechanisms of Mg matrix composites reinforced with specific spatial arrangement of in-situ TiB2 nanoparticles

增韧 材料科学 复合材料 原位 纳米颗粒 基质(化学分析) 韧性 纳米技术 化学 有机化学
作者
Peng Xiao,Yimin Gao,Cuicui Yang,Yefei Li,Xiaoyu Huang,Qingkun Liu,Zhao Siyong,Feixing Xu,Manoj Gupta
出处
期刊:Composites Part B-engineering [Elsevier]
卷期号:198: 108174-108174 被引量:55
标识
DOI:10.1016/j.compositesb.2020.108174
摘要

Abstract To improve the strength and toughness of Mg matrix composites, we propose a novel strategy to successfully develop Mg matrix composites reinforced with alternating fiber-like nanoparticle-rich (NPR) zones. A combination of in-situ casting and hot thermomechanical processing approach is employed to achieve this unique microstructure, and the influence of spatial arrangement of TiB2 nanoparticles on the microstructure, mechanical behavior, strengthening and toughening mechanisms are investigated in detail. The results show that the designed nanocomposite exhibits alternative fiber-like NPR zones and nanoparticle-free (NPF) zones, leading to the typical bimodal structure. Meanwhile, EBSD analyses reveal that the fiber-like NPR zones have much higher density of geometrically necessary dislocations than NPF zones. Accordingly, the hardness and elastic modulus in fiber-like NPR zones are enhanced significantly, acting as “hard” units, while NPF zones with high plasticity factor acting as “soft” regions. As a consequence, superior combination of tensile strength (388 MPa) and ductility (10.1%) is realized in TiB2/AZ91 nanocomposite when compared to AZ91 matrix. The strengthening mechanisms of the nanocomposite are evaluated quantitatively, and found that the fiber-like arrays significantly enhanced the load-bearing capacity of TiB2 nanoparticles. Moreover, grains in NPF zones can deform easily, acting as strain bearing soft units, coupling with cracks deflection caused by the “hard” NPR zones, both of which are responsible for toughening nanocomposite.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
4秒前
逐风给逐风的求助进行了留言
5秒前
科研通AI5应助灌饼采纳,获得30
5秒前
Owen应助Zzzzzzzzzzz采纳,获得10
6秒前
7秒前
8秒前
巫马秋寒应助笑点低可乐采纳,获得10
8秒前
xuex1完成签到,获得积分10
8秒前
情怀应助阳光的雁山采纳,获得10
10秒前
斯文败类应助jy采纳,获得10
10秒前
10秒前
日月轮回发布了新的文献求助10
11秒前
36456657应助木香采纳,获得10
12秒前
无花果应助ns采纳,获得30
12秒前
刘铭晨完成签到,获得积分10
12秒前
13秒前
YY发布了新的文献求助10
13秒前
Rrr发布了新的文献求助10
14秒前
学术蠕虫发布了新的文献求助10
14秒前
14秒前
miumiuka完成签到,获得积分10
15秒前
个性的薯片应助lyt采纳,获得20
17秒前
sweetbearm应助寒涛先生采纳,获得10
18秒前
wanci应助YY采纳,获得10
19秒前
19秒前
20秒前
20秒前
21秒前
HC完成签到 ,获得积分10
22秒前
姚姚的赵赵完成签到,获得积分10
22秒前
JamesPei应助大豪子采纳,获得30
23秒前
jy发布了新的文献求助10
23秒前
23秒前
陆靖易发布了新的文献求助10
23秒前
LQW完成签到,获得积分20
24秒前
25秒前
plant完成签到,获得积分10
25秒前
lyt完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808