Understanding the learning mechanism of convolutional neural networks in spectral analysis

人工智能 卷积神经网络 线性判别分析 判别式 偏最小二乘回归 模式识别(心理学) 联营 可视化 计算机科学 化学 特征(语言学) 机器学习 哲学 语言学
作者
Xiaolei Zhang,Jinfan Xu,Jie Yang,Li Chen,Haibo Zhou,Xiangjiang Liu,Haifeng Li,Tao Lin,Yibin Ying
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1119: 41-51 被引量:107
标识
DOI:10.1016/j.aca.2020.03.055
摘要

Deep learning approaches, especially convolutional neural network (CNN) models, have achieved excellent performances in vibrational spectral analysis. The critical drawback of the CNN approach is the lack of interpretation, and it is regarded as a black box. Interpreting the learning mechanism of chemometric models is critical for intuitive understanding and further application. In this study, an interpretable CNN model with a global average pooling layer is presented for Raman and mid-infrared spectral data analysis. A class activation mapping (CAM)-based approach is leveraged to visualize the active variables in the whole spectrum. The visualization of active variables shows a discriminative pattern in which the most contributed variables peaked around theoretical chemical characteristic bands. The visualization of the feature maps by three convolutional layers demonstrates the data transformation pipeline and how the CNN model hierarchically extracts informative spectral features. The first layer acts as a Savitzky-Golay filter and learns spectral shape characteristics, while the second layer learns enhanced patterns from typical spectral peaks on a few correlated variables. The third layer shows stable activations on critical spectral peaks. A partial least squares - linear discriminant analysis (PLS-LDA) model is presented for comparison on classification accuracy and model interpretation. The CNN model yields mean classification accuracies of 99.01 and 100% for E. coli and meat datasets on the test set, while the PLS-LDA models obtain accuracies of 98.83 and 100%. Both the CNN and PLS-LDA models demonstrate stable patterns on active variables while CNN models are more stable than PLS-LDA models on classification performances for various dataset partitions with Monte-Carlo cross-validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得20
刚刚
汉堡包应助科研通管家采纳,获得10
1秒前
怀玉发布了新的文献求助10
1秒前
牛黄完成签到 ,获得积分10
1秒前
111发布了新的文献求助10
2秒前
2秒前
刘叶发布了新的文献求助10
3秒前
panlee完成签到,获得积分10
3秒前
希望天下0贩的0应助ch采纳,获得10
3秒前
研友_gnv61n完成签到,获得积分0
4秒前
乐观啤酒应助Reese采纳,获得10
4秒前
5秒前
努力的学发布了新的文献求助10
6秒前
6秒前
活泼毛豆发布了新的文献求助10
6秒前
yy应助zhz采纳,获得10
6秒前
7秒前
繁荣的戾发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
宝福X暴富完成签到,获得积分10
10秒前
怡然平萱完成签到,获得积分10
10秒前
Fan发布了新的文献求助10
11秒前
11秒前
PGS发布了新的文献求助30
12秒前
12秒前
13秒前
云淡风清发布了新的文献求助100
14秒前
14秒前
孙大旭发布了新的文献求助10
16秒前
隐形曼青应助通达采纳,获得10
17秒前
18秒前
暴躁的幼荷完成签到 ,获得积分10
18秒前
Qiao完成签到,获得积分10
18秒前
xiezhenghong发布了新的文献求助30
18秒前
junze完成签到,获得积分10
19秒前
ydk发布了新的文献求助10
20秒前
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738241
求助须知:如何正确求助?哪些是违规求助? 3281686
关于积分的说明 10026416
捐赠科研通 2998617
什么是DOI,文献DOI怎么找? 1645277
邀请新用户注册赠送积分活动 782740
科研通“疑难数据库(出版商)”最低求助积分说明 749891