Efficient dimension reduction of hyperspectral images for big data remote sensing applications

高光谱成像 计算机科学 维数(图论) 还原(数学) 遥感 数据缩减 降维 计算机视觉 人工智能 地质学 数据挖掘 数学 几何学 纯数学
作者
Beatriz P. Garcia-Salgado,Volodymyr Ponomaryov,Sergiy Sadovnychiy,Rogelio Reyes-Reyes
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:14 (03): 1-1 被引量:4
标识
DOI:10.1117/1.jrs.14.032611
摘要

A large amount of remote sensing data can be easily acquired due to the increase in the advances in sensor’s technologies. The sensors can generate high-dimensional data in a lower time producing problems related to big data such as management and organization. Since the acquired data is characterized by a large dimension and lack of structure, the information analysis becomes harder. Therefore, an organization stage should structure the data reducing the dimension while maintaining the main properties to enable further analysis. The feature extraction and selection methods can achieve this task. Consequently, we aim to explore various pixel-wise feature extraction and selection algorithms to manage the organization stage of big data for hyperspectral images. Our work covers the comparison between feature vectors computed using the discrete Fourier transform, discrete cosine transform (DCT), and stationary wavelet transform. Moreover, spectral angle mapper, Jeffries–Matusita distance, spectral information divergence, and linear discriminant analysis (LDA) were implemented as feature selectors. Feature extraction and selection methods were combined and evaluated in terms of algorithm complexity, reduction efficiency, and classification accuracy with the aid of a support vector machine and a maximum likelihood classifier. The analysis shows that some linear transformations can perform better in natural landscapes and others in urban images. Furthermore, the study found that the combination of DCT and LDA, which achieves high classification rates with an efficient dimension reduction, can be suitable for the organization stage of a big data remote sensing application of hyperspectral images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旺旺完成签到,获得积分10
3秒前
诺贝尔状获得者完成签到,获得积分10
4秒前
5秒前
xxl完成签到,获得积分10
5秒前
王欣完成签到 ,获得积分10
6秒前
6秒前
王源源发布了新的文献求助10
6秒前
大力怀亦完成签到,获得积分20
6秒前
7秒前
顺心剑心发布了新的文献求助10
7秒前
林林完成签到 ,获得积分10
7秒前
ataybabdallah完成签到,获得积分10
8秒前
8秒前
gyhk完成签到,获得积分10
9秒前
SciGPT应助炙热的雪糕采纳,获得10
9秒前
9秒前
10秒前
11秒前
sam完成签到,获得积分10
11秒前
12秒前
英姑应助yu采纳,获得30
13秒前
玖玖发布了新的文献求助150
14秒前
ky发布了新的文献求助10
14秒前
14秒前
15秒前
现代破茧发布了新的文献求助10
15秒前
mimi发布了新的文献求助30
15秒前
lilili完成签到 ,获得积分10
15秒前
15秒前
科研通AI6应助xiaonanzi1采纳,获得10
16秒前
Lucas应助xiaonanzi1采纳,获得10
16秒前
Hello应助xiaonanzi1采纳,获得10
16秒前
浮游应助诺贝尔状获得者采纳,获得10
16秒前
SWEETYXY发布了新的文献求助10
17秒前
苗条的麦片完成签到,获得积分10
17秒前
17秒前
18秒前
韩倩茹完成签到,获得积分10
18秒前
18秒前
芊子完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5283823
求助须知:如何正确求助?哪些是违规求助? 4437576
关于积分的说明 13813988
捐赠科研通 4318377
什么是DOI,文献DOI怎么找? 2370395
邀请新用户注册赠送积分活动 1365780
关于科研通互助平台的介绍 1329225