Efficient dimension reduction of hyperspectral images for big data remote sensing applications

高光谱成像 计算机科学 维数(图论) 还原(数学) 遥感 数据缩减 降维 计算机视觉 人工智能 地质学 数据挖掘 数学 几何学 纯数学
作者
Beatriz P. Garcia-Salgado,Volodymyr Ponomaryov,Sergiy Sadovnychiy,Rogelio Reyes-Reyes
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:14 (03): 1-1 被引量:4
标识
DOI:10.1117/1.jrs.14.032611
摘要

A large amount of remote sensing data can be easily acquired due to the increase in the advances in sensor’s technologies. The sensors can generate high-dimensional data in a lower time producing problems related to big data such as management and organization. Since the acquired data is characterized by a large dimension and lack of structure, the information analysis becomes harder. Therefore, an organization stage should structure the data reducing the dimension while maintaining the main properties to enable further analysis. The feature extraction and selection methods can achieve this task. Consequently, we aim to explore various pixel-wise feature extraction and selection algorithms to manage the organization stage of big data for hyperspectral images. Our work covers the comparison between feature vectors computed using the discrete Fourier transform, discrete cosine transform (DCT), and stationary wavelet transform. Moreover, spectral angle mapper, Jeffries–Matusita distance, spectral information divergence, and linear discriminant analysis (LDA) were implemented as feature selectors. Feature extraction and selection methods were combined and evaluated in terms of algorithm complexity, reduction efficiency, and classification accuracy with the aid of a support vector machine and a maximum likelihood classifier. The analysis shows that some linear transformations can perform better in natural landscapes and others in urban images. Furthermore, the study found that the combination of DCT and LDA, which achieves high classification rates with an efficient dimension reduction, can be suitable for the organization stage of a big data remote sensing application of hyperspectral images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
echo发布了新的文献求助20
1秒前
3秒前
Victoria发布了新的文献求助10
3秒前
多情含灵发布了新的文献求助10
4秒前
慕青应助JackeyChen采纳,获得10
5秒前
小马甲应助忧虑的冰姬采纳,获得10
5秒前
5秒前
烟花应助123采纳,获得10
6秒前
cc完成签到,获得积分20
6秒前
6秒前
7秒前
AZUSA完成签到,获得积分20
8秒前
8秒前
在水一方应助猪猪院长采纳,获得10
8秒前
9秒前
朴素烧鹅发布了新的文献求助10
9秒前
superbada完成签到,获得积分10
10秒前
nanween完成签到,获得积分10
10秒前
zhaoyy发布了新的文献求助10
10秒前
10秒前
chang发布了新的文献求助10
12秒前
12秒前
12秒前
hhhi应助虚幻靖易采纳,获得10
13秒前
丘比特应助老武采纳,获得10
13秒前
14秒前
科目三应助frl采纳,获得10
14秒前
cookie完成签到,获得积分10
14秒前
畅快的天空完成签到,获得积分10
16秒前
bbanshan完成签到,获得积分10
16秒前
四时万物兮完成签到,获得积分10
17秒前
Orange应助yshhhhhhhh采纳,获得10
18秒前
隐形曼青应助哈哈哈哈哈采纳,获得10
19秒前
20秒前
Victoria发布了新的文献求助10
21秒前
21秒前
FancyShi发布了新的文献求助30
22秒前
小牧鱼完成签到,获得积分10
22秒前
黑炭球完成签到,获得积分10
23秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988646
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252059
捐赠科研通 3269632
什么是DOI,文献DOI怎么找? 1804713
邀请新用户注册赠送积分活动 881865
科研通“疑难数据库(出版商)”最低求助积分说明 809012