Global context based automatic road segmentation via dilated convolutional neural network

卷积神经网络 计算机科学 背景(考古学) 分割 判别式 人工智能 棱锥(几何) 联营 特征(语言学) 水准点(测量) 编码器 图像分割 尺度空间分割 像素 深度学习 模式识别(心理学) 数学 地图学 古生物学 哲学 操作系统 生物 地理 语言学 几何学
作者
Meng Lan,Yipeng Zhang,Lefei Zhang,Bo Du
出处
期刊:Information Sciences [Elsevier BV]
卷期号:535: 156-171 被引量:128
标识
DOI:10.1016/j.ins.2020.05.062
摘要

Road segmentation from remote sensing images is a critical task in many applications. In recent years, various approaches, particularly deep learning-based methods, have been proposed for accurate road segmentation. However, most existing road segmentation methods always obtain unsatisfactory results (e.g., heterogeneous pixels) due to the complex backgrounds and view occlusions of buildings and trees around a road; consequently, road segmentation remains a challenging problem. In this study, we propose a novel global context based dilated convolutional neural network (GC-DCNN) to address the aforementioned problem. The structure of GC-DCNN is similar to that of UNet. In particular, building the encoder of GC-DCNN with three residual dilated blocks is suggested to further enlarge the effective receptive field and learn additional discriminative features. Thereafter, a pyramid pooling module is used to capture the multiscale global context features and fuse them to achieve stronger feature representation. The decoder network upsamples the fused features to the same size as the input image, combining the high-resolution features with the contracting path of the encoder network. Moreover, the dice coefficient loss is adopted as the loss function. This function differs from those in most previous studies but is more suitable for road segmentation. Extensive experimental results on two benchmark datasets compared with several baseline models demonstrate the superiority of the proposed GC-DCNN algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小蘑菇应助nini采纳,获得10
1秒前
1秒前
1秒前
雪山飞鹰发布了新的文献求助10
1秒前
1秒前
合适的乐乐完成签到,获得积分10
2秒前
2秒前
song发布了新的文献求助10
2秒前
13驳回了汉堡包应助
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
WT发布了新的文献求助10
3秒前
希望天下0贩的0应助shifeng采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
123发布了新的文献求助30
4秒前
4秒前
Jasper应助abtx314采纳,获得10
5秒前
echo发布了新的文献求助10
5秒前
Leo发布了新的文献求助30
5秒前
殷楷霖发布了新的文献求助10
6秒前
XiaodongWang发布了新的文献求助10
6秒前
XiaodongWang发布了新的文献求助10
6秒前
XiaodongWang发布了新的文献求助10
6秒前
XiaodongWang发布了新的文献求助10
6秒前
XiaodongWang发布了新的文献求助10
6秒前
XiaodongWang发布了新的文献求助30
6秒前
XiaodongWang发布了新的文献求助10
6秒前
XiaodongWang发布了新的文献求助10
6秒前
XiaodongWang发布了新的文献求助10
6秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014