已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The orchard plot: Cultivating a forest plot for use in ecology, evolution, and beyond

林地 绘图(图形) 果园 生态学 荟萃分析 计算机科学 统计 数学 生物 医学 内科学
作者
Shinichi Nakagawa,Malgorzata Lagisz,Rose E. O’Dea,Joanna Rutkowska,Yefeng Yang,Daniel W. A. Noble,Alistair M. Senior
出处
期刊:Research Synthesis Methods [Wiley]
卷期号:12 (1): 4-12 被引量:156
标识
DOI:10.1002/jrsm.1424
摘要

"Classic" forest plots show the effect sizes from individual studies and the aggregate effect from a meta-analysis. However, in ecology and evolution, meta-analyses routinely contain over 100 effect sizes, making the classic forest plot of limited use. We surveyed 102 meta-analyses in ecology and evolution, finding that only 11% use the classic forest plot. Instead, most used a "forest-like plot," showing point estimates (with 95% confidence intervals [CIs]) from a series of subgroups or categories in a meta-regression. We propose a modification of the forest-like plot, which we name the "orchard plot." Orchard plots, in addition to showing overall mean effects and CIs from meta-analyses/regressions, also include 95% prediction intervals (PIs), and the individual effect sizes scaled by their precision. The PI allows the user and reader to see the range in which an effect size from a future study may be expected to fall. The PI, therefore, provides an intuitive interpretation of any heterogeneity in the data. Supplementing the PI, the inclusion of underlying effect sizes also allows the user to see any influential or outlying effect sizes. We showcase the orchard plot with example datasets from ecology and evolution, using the R package, orchard, including several functions for visualizing meta-analytic data using forest-plot derivatives. We consider the orchard plot as a variant on the classic forest plot, cultivated to the needs of meta-analysts in ecology and evolution. Hopefully, the orchard plot will prove fruitful for visualizing large collections of heterogeneous effect sizes regardless of the field of study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
元水云完成签到,获得积分10
4秒前
最牛的kangkang完成签到,获得积分10
4秒前
吃的饭广泛完成签到 ,获得积分10
6秒前
7秒前
qikkk应助最牛的kangkang采纳,获得10
8秒前
8秒前
静静发布了新的文献求助10
8秒前
英俊的铭应助shinn采纳,获得10
9秒前
ohwhale完成签到 ,获得积分10
9秒前
闪闪的衫发布了新的文献求助10
9秒前
12秒前
14秒前
CipherSage应助8D采纳,获得10
15秒前
努力搞科研完成签到,获得积分10
15秒前
干净的天与完成签到,获得积分10
15秒前
Binbin完成签到 ,获得积分10
16秒前
16秒前
Hung完成签到,获得积分10
17秒前
17秒前
18秒前
小葡萄icon完成签到 ,获得积分10
18秒前
W~舞发布了新的文献求助10
19秒前
22秒前
23秒前
konosuba完成签到,获得积分0
23秒前
麦旋风发布了新的文献求助10
24秒前
马敏完成签到 ,获得积分10
25秒前
25秒前
W~舞完成签到,获得积分10
26秒前
27秒前
所所应助科研通管家采纳,获得100
27秒前
Jasper应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
乐乐应助科研通管家采纳,获得10
27秒前
28秒前
28秒前
木子完成签到 ,获得积分10
28秒前
丘比特应助laiwei采纳,获得30
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513189
关于积分的说明 11166755
捐赠科研通 3248411
什么是DOI,文献DOI怎么找? 1794243
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629