The orchard plot: Cultivating a forest plot for use in ecology, evolution, and beyond

林地 绘图(图形) 果园 生态学 荟萃分析 计算机科学 统计 数学 生物 医学 内科学
作者
Shinichi Nakagawa,Malgorzata Lagisz,Rose E. O’Dea,Joanna Rutkowska,Yefeng Yang,Daniel W. A. Noble,Alistair M. Senior
出处
期刊:Research Synthesis Methods [Wiley]
卷期号:12 (1): 4-12 被引量:156
标识
DOI:10.1002/jrsm.1424
摘要

"Classic" forest plots show the effect sizes from individual studies and the aggregate effect from a meta-analysis. However, in ecology and evolution, meta-analyses routinely contain over 100 effect sizes, making the classic forest plot of limited use. We surveyed 102 meta-analyses in ecology and evolution, finding that only 11% use the classic forest plot. Instead, most used a "forest-like plot," showing point estimates (with 95% confidence intervals [CIs]) from a series of subgroups or categories in a meta-regression. We propose a modification of the forest-like plot, which we name the "orchard plot." Orchard plots, in addition to showing overall mean effects and CIs from meta-analyses/regressions, also include 95% prediction intervals (PIs), and the individual effect sizes scaled by their precision. The PI allows the user and reader to see the range in which an effect size from a future study may be expected to fall. The PI, therefore, provides an intuitive interpretation of any heterogeneity in the data. Supplementing the PI, the inclusion of underlying effect sizes also allows the user to see any influential or outlying effect sizes. We showcase the orchard plot with example datasets from ecology and evolution, using the R package, orchard, including several functions for visualizing meta-analytic data using forest-plot derivatives. We consider the orchard plot as a variant on the classic forest plot, cultivated to the needs of meta-analysts in ecology and evolution. Hopefully, the orchard plot will prove fruitful for visualizing large collections of heterogeneous effect sizes regardless of the field of study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助学术小黄采纳,获得10
刚刚
南宫萍完成签到,获得积分10
刚刚
刚刚
刚刚
小苔藓发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
快乐银耳汤应助FFF采纳,获得10
1秒前
shelly0621完成签到,获得积分10
1秒前
科研通AI5应助FFF采纳,获得10
1秒前
yyang完成签到,获得积分10
1秒前
穆思柔完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
脑洞疼应助Xu采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
Dddd发布了新的文献求助10
4秒前
xx完成签到,获得积分20
4秒前
BEIBEI完成签到,获得积分10
4秒前
liyi发布了新的文献求助10
4秒前
苗条的山晴完成签到,获得积分10
4秒前
5秒前
mm完成签到,获得积分10
6秒前
JUll发布了新的文献求助10
6秒前
无奈抽屉完成签到 ,获得积分10
6秒前
6秒前
7秒前
风中的夏兰完成签到,获得积分10
7秒前
czt完成签到,获得积分10
7秒前
研友_nPPERn发布了新的文献求助10
7秒前
8秒前
温柔若发布了新的文献求助10
8秒前
ry发布了新的文献求助10
8秒前
gms发布了新的文献求助10
8秒前
Owen应助judy采纳,获得30
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678