The orchard plot: Cultivating a forest plot for use in ecology, evolution, and beyond

林地 绘图(图形) 果园 生态学 荟萃分析 计算机科学 统计 数学 生物 医学 内科学
作者
Shinichi Nakagawa,Malgorzata Lagisz,Rose E. O’Dea,Joanna Rutkowska,Yefeng Yang,Daniel W. A. Noble,Alistair M. Senior
出处
期刊:Research Synthesis Methods [Wiley]
卷期号:12 (1): 4-12 被引量:210
标识
DOI:10.1002/jrsm.1424
摘要

“Classic” forest plots show the effect sizes from individual studies and the aggregate effect from a meta‐analysis. However, in ecology and evolution, meta‐analyses routinely contain over 100 effect sizes, making the classic forest plot of limited use. We surveyed 102 meta‐analyses in ecology and evolution, finding that only 11% use the classic forest plot. Instead, most used a “forest‐like plot,” showing point estimates (with 95% confidence intervals [CIs]) from a series of subgroups or categories in a meta‐regression. We propose a modification of the forest‐like plot, which we name the “orchard plot.” Orchard plots, in addition to showing overall mean effects and CIs from meta‐analyses/regressions, also include 95% prediction intervals (PIs), and the individual effect sizes scaled by their precision. The PI allows the user and reader to see the range in which an effect size from a future study may be expected to fall. The PI, therefore, provides an intuitive interpretation of any heterogeneity in the data. Supplementing the PI, the inclusion of underlying effect sizes also allows the user to see any influential or outlying effect sizes. We showcase the orchard plot with example datasets from ecology and evolution, using the R package, orchard , including several functions for visualizing meta‐analytic data using forest‐plot derivatives. We consider the orchard plot as a variant on the classic forest plot, cultivated to the needs of meta‐analysts in ecology and evolution. Hopefully, the orchard plot will prove fruitful for visualizing large collections of heterogeneous effect sizes regardless of the field of study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brown完成签到,获得积分10
1秒前
zzz发布了新的文献求助10
1秒前
xiaoliu完成签到,获得积分10
2秒前
2秒前
3秒前
dglyl发布了新的文献求助10
3秒前
科研通AI6应助lc采纳,获得10
4秒前
5秒前
自觉的丹珍完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
崽崽发布了新的文献求助10
8秒前
无花果应助背后的广山采纳,获得10
8秒前
共享精神应助小白采纳,获得10
8秒前
8秒前
ZL完成签到,获得积分10
9秒前
淡然冬灵发布了新的文献求助10
9秒前
营长完成签到 ,获得积分10
9秒前
9秒前
9秒前
diguohu发布了新的文献求助10
10秒前
12秒前
red发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
14秒前
失眠采白完成签到,获得积分10
14秒前
Jocelyn完成签到,获得积分10
14秒前
15秒前
pkouji发布了新的文献求助10
15秒前
个性的紫菜应助彩色青亦采纳,获得10
15秒前
lsq完成签到 ,获得积分10
15秒前
田様应助草拟大坝采纳,获得10
16秒前
老李发布了新的文献求助10
17秒前
18秒前
在水一方应助包容代芹采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858