Individual Tree Parameters Estimation for Plantation Forests Based on UAV Oblique Photography

点云 分割 树(集合论) 计算机科学 森林资源清查 摄影测量学 航空摄影 遥感 图像分割 牙冠(牙科) 斜格 环境科学 人工智能 森林经营 数学 地理 农林复合经营 医学 语言学 数学分析 哲学 牙科
作者
Xuemei Zhou,Xiaoli Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 96184-96198 被引量:34
标识
DOI:10.1109/access.2020.2994911
摘要

The parameters of individual trees in forests are important for accurate forestry inventory and sustainable management. Unmanned aerial vehicle (UAV) oblique photogrammetry technology plays an important role in forest surveys because of its flexibility, low cost, high spatial data resolution. Few studies have committed to extract individual tree parameters and estimate individual tree biomass using oblique photography data. In this study, images of larch(Larix gmelinii) and Chinese pine(Pinus tabuliformis) plantations with different ages were acquired by UAV oblique photogrammetry. Then, three dimension (3D) point clouds were constructed recovered by the structure from motion (SFM) algorithm and than normalized. The watershed segmentation, point cloud segmentation (PCS) and object-oriented multiresolution segmentation (MRS) methods were used to delineate individual trees and extract tree height and crown area. Finally, stepwise regression was used to fitting individual tree biomass models based on the point cloud metrics, crown area obtained from individual tree segmentation and measured biomass. The results indicated that: most suitable segmentation method are determined for different tree species at different ages; optimal prediction models of individual tree biomass can be constructed by combining the point cloud metrics with the tree crown area obtained by segmentation, accuracy of the models are all greater than 0.8. The results show that UAV oblique photography technology can be used to accurately extract the individual tree parameters of larch and Chinese pine plantation forests in northern China and can meet the requirements of large-scale and low-cost forestry inventory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
直率梦菲发布了新的文献求助10
2秒前
所所应助叶白山采纳,获得10
4秒前
5秒前
包代桃发布了新的文献求助10
6秒前
qwt发布了新的文献求助10
7秒前
二玥完成签到,获得积分20
7秒前
wx完成签到,获得积分10
7秒前
跳跃尔琴发布了新的文献求助10
8秒前
Dsunflower完成签到 ,获得积分10
11秒前
wanci应助Hcr采纳,获得30
12秒前
12秒前
13秒前
qwt完成签到,获得积分20
14秒前
Tohka完成签到 ,获得积分10
14秒前
15秒前
Bminor完成签到,获得积分10
15秒前
怡萱发布了新的文献求助10
15秒前
15秒前
miaomiao发布了新的文献求助10
16秒前
包代桃完成签到,获得积分20
16秒前
月成发布了新的文献求助10
17秒前
19秒前
yang完成签到,获得积分10
19秒前
毛毛发布了新的文献求助50
20秒前
21秒前
小蘑菇应助青松采纳,获得10
22秒前
23秒前
23秒前
24秒前
Hcr完成签到,获得积分20
24秒前
Zz完成签到 ,获得积分10
24秒前
跳跃尔琴发布了新的文献求助10
24秒前
25秒前
27秒前
笑点低的小天鹅完成签到 ,获得积分10
27秒前
炙热若云完成签到,获得积分10
27秒前
28秒前
King完成签到,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143628
求助须知:如何正确求助?哪些是违规求助? 2795064
关于积分的说明 7813166
捐赠科研通 2451128
什么是DOI,文献DOI怎么找? 1304317
科研通“疑难数据库(出版商)”最低求助积分说明 627213
版权声明 601393