Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks

卷积神经网络 肺癌 转录组 医学 计算生物学 模式识别(心理学) 肿瘤科 人工智能 生物 计算机科学 基因 基因表达 遗传学
作者
Kun‐Hsing Yu,Feiran Wang,Gerald J. Berry,Christopher Ré,Russ B. Altman,M Snyder,Isaac S. Kohane
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:27 (5): 757-769 被引量:98
标识
DOI:10.1093/jamia/ocz230
摘要

Abstract Objective Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the morphological patterns associated with the molecular subtypes have not been systematically studied. To bridge this gap, we developed a quantitative histopathology analytic framework to identify the types and gene expression subtypes of non-small cell lung cancer objectively. Materials and Methods We processed whole-slide histopathology images of lung adenocarcinoma (n = 427) and lung squamous cell carcinoma patients (n = 457) in the Cancer Genome Atlas. We built convolutional neural networks to classify histopathology images, evaluated their performance by the areas under the receiver-operating characteristic curves (AUCs), and validated the results in an independent cohort (n = 125). Results To establish neural networks for quantitative image analyses, we first built convolutional neural network models to identify tumor regions from adjacent dense benign tissues (AUCs > 0.935) and recapitulated expert pathologists’ diagnosis (AUCs > 0.877), with the results validated in an independent cohort (AUCs = 0.726-0.864). We further demonstrated that quantitative histopathology morphology features identified the major transcriptomic subtypes of both adenocarcinoma and squamous cell carcinoma (P < .01). Discussion Our study is the first to classify the transcriptomic subtypes of non-small cell lung cancer using fully automated machine learning methods. Our approach does not rely on prior pathology knowledge and can discover novel clinically relevant histopathology patterns objectively. The developed procedure is generalizable to other tumor types or diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
BJ_whc发布了新的文献求助10
5秒前
石玉发布了新的文献求助10
6秒前
Yr发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
机智向薇发布了新的文献求助10
12秒前
赘婿应助熬夜大王采纳,获得10
14秒前
15秒前
111发布了新的文献求助10
15秒前
传奇3应助方寸采纳,获得10
16秒前
sci梦发布了新的文献求助10
19秒前
19秒前
小蘑菇应助无奈慕卉采纳,获得30
21秒前
22秒前
共享精神应助落后的寻凝采纳,获得10
23秒前
英姑应助111采纳,获得10
23秒前
feloys发布了新的文献求助10
24秒前
24秒前
科研通AI5应助大神水瓶座采纳,获得10
25秒前
喜悦非笑完成签到,获得积分20
25秒前
28秒前
脑洞疼应助wojiushizmediao采纳,获得30
28秒前
喜悦非笑发布了新的文献求助10
28秒前
28秒前
zhenzheng完成签到 ,获得积分10
29秒前
31秒前
小智0921完成签到,获得积分10
31秒前
路弥发布了新的文献求助10
31秒前
就这应助晶晶采纳,获得10
31秒前
33秒前
冷酷的枕头完成签到,获得积分20
34秒前
芈钥完成签到 ,获得积分10
35秒前
研友_n2Qv2L发布了新的文献求助10
36秒前
田様应助石玉采纳,获得10
36秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3760769
求助须知:如何正确求助?哪些是违规求助? 3304586
关于积分的说明 10130417
捐赠科研通 3018464
什么是DOI,文献DOI怎么找? 1657649
邀请新用户注册赠送积分活动 791639
科研通“疑难数据库(出版商)”最低求助积分说明 754529