How well do the ERA‐Interim, ERA‐5, GLDAS‐2.1 and NCEP‐R2 reanalysis datasets represent daily air temperature over the Tibetan Plateau?

环境科学 气候学 数据同化 高原(数学) 气象学 空气温度 大气科学 地质学 数学 物理 数学分析
作者
Li Liu,Haiting Gu,Jingkai Xie,Yue‐Ping Xu
出处
期刊:International Journal of Climatology [Wiley]
卷期号:41 (2): 1484-1505 被引量:36
标识
DOI:10.1002/joc.6867
摘要

Abstract Snow and glacier are important components in the hydrological cycle of the Tibetan Plateau (TP). Air temperature, as the main driver in freezing and thawing processes, becomes vital for hydrological modelling and prediction in this region. Due to a sparse ground gauging network, spatial density of air temperature measurement is insufficient for hydro‐meteorological studies. Therefore, the aim of this study is to identify the best representative temperature data for hydrological applications from four widely used reanalysis products, including ERA‐Interim, ERA‐5, GLDAS‐2.1 and NCEP‐R2, with reference to in situ measurements and gridded snow depth from the year 2008–2017 over the entire TP. To reduce errors, Bayesian Joint Probability (BJP) approach based on K‐Nearest Neighbour (KNN) classification algorithm (KNN‐BJP) is proposed to post‐process gridded reanalyses. The results indicate that all the reanalysis datasets provide highly correlated but cold biased air temperature. The correlation ecoefficiency is greater than 0.85. The cold biases are near −3 ° C and mainly distributed in the southeastern TP. Bias in daily maximum temperature during Spring is greater than −8 ° C for most stations. ERA‐Interim is found to have the closest agreement with in situ measurements, closely followed by GLDAS‐2.1. KNN‐BJP is found to be effective within a distance smaller than 5° . After post‐processing, the prominent underestimation is efficiently corrected with Bias near 0. RMSE is markedly reduced to be smaller than 2.5 ° C . The post‐processed ERA‐5 and GLDAS‐2.1 are as accurate as ERA‐Interim, but able to provide more detailed information for extreme events due to their finer spatial resolution. Thus, ERA‐5 and GLDAS‐2.1 are more recommended to represent air temperature in the TP. Snow depth as complementary reference data is able to present spatial variance of air temperature. Our study can help alleviate the problem of sparse air temperature data over the TP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江峰应助无聊的冰之采纳,获得10
刚刚
NancyDee发布了新的文献求助10
1秒前
1秒前
llmin完成签到,获得积分10
3秒前
3秒前
4秒前
乐乐应助芊芊采纳,获得10
4秒前
QIN完成签到,获得积分20
5秒前
剪影改发布了新的文献求助10
5秒前
6秒前
竹筏过海应助little采纳,获得30
6秒前
HNNUYanY应助追寻绮烟采纳,获得30
7秒前
脑洞疼应助ALY12345采纳,获得10
7秒前
Morgans00完成签到,获得积分10
8秒前
8秒前
顾矜应助淡淡的凝冬采纳,获得10
8秒前
无花果应助ZWQ采纳,获得10
9秒前
狒狒发布了新的文献求助10
11秒前
12秒前
纯情的严青完成签到,获得积分10
12秒前
嘻嘻发布了新的文献求助10
12秒前
Keming完成签到,获得积分10
12秒前
13秒前
15秒前
15秒前
owoow发布了新的文献求助10
15秒前
丘比特应助崩溃的小牛马采纳,获得10
15秒前
快乐的医学生完成签到,获得积分10
16秒前
上官若男应助liuhll采纳,获得30
16秒前
实验体8567号完成签到,获得积分10
16秒前
16秒前
嗯嗯发布了新的文献求助10
17秒前
zhugao完成签到,获得积分10
17秒前
18秒前
波安班发布了新的文献求助10
18秒前
旷意发布了新的文献求助10
19秒前
19秒前
咎青文发布了新的文献求助10
20秒前
嘉子完成签到 ,获得积分10
22秒前
22秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464156
求助须知:如何正确求助?哪些是违规求助? 3057470
关于积分的说明 9057304
捐赠科研通 2747508
什么是DOI,文献DOI怎么找? 1507390
科研通“疑难数据库(出版商)”最低求助积分说明 696514
邀请新用户注册赠送积分活动 696062