On the theory of deep learning: A theoretical physics perspective (Part I)

计算机科学 人工智能 抽象 理论计算机科学 深度学习 代表(政治) 启发式 物理系统 机器学习 物理 哲学 认识论 量子力学 政治 政治学 法学
作者
Alejandro Chinea
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:632: 129308-129308 被引量:1
标识
DOI:10.1016/j.physa.2023.129308
摘要

Deep learning machines are computational models composed of multiple processing layers of adaptive weights to learn representations of data with multiple levels of abstraction. Their structures mainly reflect the intuitive plausibility of decomposing a problem into multiple levels of computation and representation since it is believed that higher layers of representation allow a system to learn complex functions. Surprisingly, after decades of research, from learning and design perspectives these models are still deployed in a heuristic manner. In this paper, deep learning machines are modeled as disordered physical systems where its macroscopic behavior is determined in terms of the interactions defined between the basic information-processing constituent of these models, namely, the artificial neuron. They are viewed as the equilibrium states of a theoretical body that is subject to the law of increase of the entropy. The study of the changes in energy of the body when passing from one equilibrium state to another is used to understand the structure and role of the phase space of the system, and the resulting degree of disorder. It is shown that the topology of these models is strongly linked to their resulting level of disorder. Furthermore, the proposed theoretical characterization permit to assess the thermodynamic efficiency with which information can be processed by these models, and to provide a practical methodology to quantitatively estimate and compare their expected learning and generalization capabilities. These theoretical results provides new insights to the theory of deep learning and their implications are shown to be consistent through a set of benchmarks designed to experimentally assess their validity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
XH发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
雨晴完成签到,获得积分10
5秒前
6秒前
瓜瓜发布了新的文献求助30
7秒前
111完成签到,获得积分10
7秒前
子车凡完成签到,获得积分10
7秒前
脑洞疼应助xiaxin采纳,获得10
7秒前
7秒前
xueshu发布了新的文献求助10
8秒前
瞿紫菱发布了新的文献求助10
8秒前
权夏瑶完成签到,获得积分10
9秒前
LYSM应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
9秒前
852应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
打工肥仔应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
夜守发布了新的文献求助10
10秒前
LYSM应助科研通管家采纳,获得10
10秒前
孟陬十一应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
莎头完成签到,获得积分10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668189
求助须知:如何正确求助?哪些是违规求助? 3226562
关于积分的说明 9770261
捐赠科研通 2936503
什么是DOI,文献DOI怎么找? 1608620
邀请新用户注册赠送积分活动 759734
科研通“疑难数据库(出版商)”最低求助积分说明 735521