On the theory of deep learning: A theoretical physics perspective (Part I)

计算机科学 人工智能 抽象 理论计算机科学 深度学习 代表(政治) 启发式 物理系统 机器学习 物理 哲学 认识论 量子力学 政治 政治学 法学
作者
Alejandro Chinea
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:632: 129308-129308 被引量:1
标识
DOI:10.1016/j.physa.2023.129308
摘要

Deep learning machines are computational models composed of multiple processing layers of adaptive weights to learn representations of data with multiple levels of abstraction. Their structures mainly reflect the intuitive plausibility of decomposing a problem into multiple levels of computation and representation since it is believed that higher layers of representation allow a system to learn complex functions. Surprisingly, after decades of research, from learning and design perspectives these models are still deployed in a heuristic manner. In this paper, deep learning machines are modeled as disordered physical systems where its macroscopic behavior is determined in terms of the interactions defined between the basic information-processing constituent of these models, namely, the artificial neuron. They are viewed as the equilibrium states of a theoretical body that is subject to the law of increase of the entropy. The study of the changes in energy of the body when passing from one equilibrium state to another is used to understand the structure and role of the phase space of the system, and the resulting degree of disorder. It is shown that the topology of these models is strongly linked to their resulting level of disorder. Furthermore, the proposed theoretical characterization permit to assess the thermodynamic efficiency with which information can be processed by these models, and to provide a practical methodology to quantitatively estimate and compare their expected learning and generalization capabilities. These theoretical results provides new insights to the theory of deep learning and their implications are shown to be consistent through a set of benchmarks designed to experimentally assess their validity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助赎罪采纳,获得10
1秒前
1秒前
凌霄同学发布了新的文献求助10
1秒前
lwh104完成签到,获得积分10
2秒前
冷静发布了新的文献求助50
2秒前
我今停杯一问之应助妮妮采纳,获得20
3秒前
秋半梦发布了新的文献求助10
3秒前
丰富又槐完成签到,获得积分10
3秒前
汉堡包应助LRose采纳,获得30
3秒前
GGBOND发布了新的文献求助20
4秒前
CipherSage应助嗑瓜子传奇采纳,获得10
5秒前
Ava应助zhang采纳,获得10
6秒前
7秒前
涛哥完成签到,获得积分10
8秒前
9秒前
舒心宛亦发布了新的文献求助10
9秒前
微笑天川发布了新的文献求助10
10秒前
you完成签到,获得积分20
12秒前
12秒前
猩猩发布了新的文献求助10
13秒前
13秒前
meng发布了新的文献求助10
14秒前
冷静完成签到,获得积分10
15秒前
HappyDog发布了新的文献求助10
16秒前
17秒前
18秒前
条条123完成签到 ,获得积分10
18秒前
孙兆杰发布了新的文献求助10
18秒前
20秒前
GGBOND完成签到,获得积分10
22秒前
meng完成签到,获得积分10
23秒前
23秒前
斗南无花完成签到,获得积分10
23秒前
lw发布了新的文献求助10
23秒前
24秒前
25秒前
happy2016发布了新的文献求助10
25秒前
ding应助123采纳,获得30
26秒前
虹虹发布了新的文献求助10
28秒前
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141588
求助须知:如何正确求助?哪些是违规求助? 2792521
关于积分的说明 7803368
捐赠科研通 2448740
什么是DOI,文献DOI怎么找? 1302918
科研通“疑难数据库(出版商)”最低求助积分说明 626665
版权声明 601240