On the theory of deep learning: A theoretical physics perspective (Part I)

计算机科学 人工智能 抽象 理论计算机科学 深度学习 代表(政治) 启发式 物理系统 机器学习 物理 政治学 量子力学 政治 认识论 哲学 法学
作者
Alejandro Chinea
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:632: 129308-129308 被引量:1
标识
DOI:10.1016/j.physa.2023.129308
摘要

Deep learning machines are computational models composed of multiple processing layers of adaptive weights to learn representations of data with multiple levels of abstraction. Their structures mainly reflect the intuitive plausibility of decomposing a problem into multiple levels of computation and representation since it is believed that higher layers of representation allow a system to learn complex functions. Surprisingly, after decades of research, from learning and design perspectives these models are still deployed in a heuristic manner. In this paper, deep learning machines are modeled as disordered physical systems where its macroscopic behavior is determined in terms of the interactions defined between the basic information-processing constituent of these models, namely, the artificial neuron. They are viewed as the equilibrium states of a theoretical body that is subject to the law of increase of the entropy. The study of the changes in energy of the body when passing from one equilibrium state to another is used to understand the structure and role of the phase space of the system, and the resulting degree of disorder. It is shown that the topology of these models is strongly linked to their resulting level of disorder. Furthermore, the proposed theoretical characterization permit to assess the thermodynamic efficiency with which information can be processed by these models, and to provide a practical methodology to quantitatively estimate and compare their expected learning and generalization capabilities. These theoretical results provides new insights to the theory of deep learning and their implications are shown to be consistent through a set of benchmarks designed to experimentally assess their validity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhh完成签到,获得积分20
1秒前
NexusExplorer应助zzz采纳,获得10
1秒前
2秒前
pbw9123发布了新的文献求助10
2秒前
89757完成签到,获得积分10
3秒前
3秒前
小学霸搞科研完成签到 ,获得积分10
4秒前
4秒前
littlestone完成签到,获得积分10
5秒前
5秒前
5秒前
zhh发布了新的文献求助10
6秒前
Trisun发布了新的文献求助10
7秒前
le完成签到,获得积分10
9秒前
活泼灵枫发布了新的文献求助10
12秒前
zhaoyuyuan发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
Ava应助扶桑采纳,获得10
15秒前
小谢不谢发布了新的文献求助10
16秒前
lize5493发布了新的文献求助10
17秒前
罗wq完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
Yan完成签到,获得积分10
19秒前
20秒前
欢喜的晓霜完成签到,获得积分10
20秒前
赘婿应助zhh采纳,获得10
20秒前
我爱电解液完成签到,获得积分20
20秒前
Orange应助默默的白莲采纳,获得10
21秒前
汪汪完成签到,获得积分10
21秒前
22秒前
22秒前
23秒前
23秒前
25秒前
luoluo应助沫笙采纳,获得10
25秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107024
捐赠科研通 3232788
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870389
科研通“疑难数据库(出版商)”最低求助积分说明 802011