On the theory of deep learning: A theoretical physics perspective (Part I)

计算机科学 人工智能 抽象 理论计算机科学 深度学习 代表(政治) 启发式 物理系统 机器学习 物理 政治学 量子力学 政治 认识论 哲学 法学
作者
Alejandro Chinea
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:632: 129308-129308 被引量:1
标识
DOI:10.1016/j.physa.2023.129308
摘要

Deep learning machines are computational models composed of multiple processing layers of adaptive weights to learn representations of data with multiple levels of abstraction. Their structures mainly reflect the intuitive plausibility of decomposing a problem into multiple levels of computation and representation since it is believed that higher layers of representation allow a system to learn complex functions. Surprisingly, after decades of research, from learning and design perspectives these models are still deployed in a heuristic manner. In this paper, deep learning machines are modeled as disordered physical systems where its macroscopic behavior is determined in terms of the interactions defined between the basic information-processing constituent of these models, namely, the artificial neuron. They are viewed as the equilibrium states of a theoretical body that is subject to the law of increase of the entropy. The study of the changes in energy of the body when passing from one equilibrium state to another is used to understand the structure and role of the phase space of the system, and the resulting degree of disorder. It is shown that the topology of these models is strongly linked to their resulting level of disorder. Furthermore, the proposed theoretical characterization permit to assess the thermodynamic efficiency with which information can be processed by these models, and to provide a practical methodology to quantitatively estimate and compare their expected learning and generalization capabilities. These theoretical results provides new insights to the theory of deep learning and their implications are shown to be consistent through a set of benchmarks designed to experimentally assess their validity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助ZHANGHUI采纳,获得10
刚刚
单身的淇完成签到 ,获得积分10
刚刚
Jane发布了新的文献求助50
刚刚
刚刚
刚刚
应用1完成签到,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
华仔应助阔达如柏采纳,获得10
1秒前
2秒前
杨颂扬完成签到,获得积分10
2秒前
Jasper应助椰子糖采纳,获得10
2秒前
Apricity应助论文侠采纳,获得10
2秒前
852应助椰子糖采纳,获得10
2秒前
slmple关注了科研通微信公众号
3秒前
赘婿应助CT采纳,获得10
3秒前
jk完成签到,获得积分10
3秒前
完美世界应助贪玩采纳,获得10
4秒前
Avery发布了新的文献求助10
4秒前
小蘑菇应助标致忆霜采纳,获得10
4秒前
潺潺流水完成签到,获得积分10
4秒前
HCl关闭了HCl文献求助
4秒前
5秒前
彭于晏应助行者无疆采纳,获得10
5秒前
mf发布了新的文献求助10
5秒前
嘟嘟完成签到,获得积分10
5秒前
花痴的幻然完成签到,获得积分10
5秒前
科研通AI6应助胖达采纳,获得10
6秒前
嘟嘟嘟发布了新的文献求助10
6秒前
小土豆完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
乐乐应助孙傲采纳,获得10
7秒前
潺潺流水发布了新的文献求助10
7秒前
三星级读书完成签到,获得积分10
7秒前
8秒前
whatever应助xiami采纳,获得20
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618980
求助须知:如何正确求助?哪些是违规求助? 4703923
关于积分的说明 14924415
捐赠科研通 4758994
什么是DOI,文献DOI怎么找? 2550336
邀请新用户注册赠送积分活动 1513125
关于科研通互助平台的介绍 1474401