执行机构
机器人
工程类
计算机科学
气动执行机构
控制系统
模拟
电气工程
人工智能
作者
Jennifer M. Boothby,Jarod C. Gagnon,Emil G. McDowell,Tessa Van Volkenburg,Luke J. Currano,Zhiyong Xia
出处
期刊:Soft robotics
[Mary Ann Liebert]
日期:2022-02-01
卷期号:9 (1): 154-162
被引量:32
标识
DOI:10.1089/soro.2020.0135
摘要
An untethered, soft robot using liquid crystal elastomer (LCE) actuators, onboard power, and wireless Bluetooth control was developed. LCE actuators were thermally triggered using Joule heating and demonstrated an ∼5 N force pull capacity per LCE. A >20% repeatable strain was demonstrated over >100 cycles with minimal loss of strain at high cycle numbers. The LCE actuators were horizontally oriented to maximize conversion of LCE contraction to overall robot movement. A battery and control board were integrated into the body of the robot, which allowed for Bluetooth control of the LCE on/off cycle. System level programming and design were implemented to offset the slow recovery associated with LCE actuators. The multiple LCE actuator legs were programmed to allow individual control of on/off cycles for each leg. LCE leg actuation was alternated between inner and outer legs to provide horizontal movement with minimized loss of motion during the LCE recovery cycle by actuating one set of legs during the recovery cycle of the other set for a maximum movement speed of 1.27 cm/min. Path control was also demonstrated by turning the robot by actuating two LCE legs on one side of the robot. The robot was able to pull up to 1400 g in ideal frictional conditions, allowing the possibility of payload transport, additional battery storage, or onboard sensors. Additional design considerations are discussed to further improve overall robot speed in the future by combining system and material level design considerations.
科研通智能强力驱动
Strongly Powered by AbleSci AI