Hyperspectral Image Classification—Traditional to Deep Models: A Survey for Future Prospects

高光谱成像 计算机科学 人工智能 上下文图像分类 遥感 计算机视觉 模式识别(心理学) 图像(数学) 地质学
作者
Muhammad Ahmad,Sidrah Shabbir,Swalpa Kumar Roy,Danfeng Hong,Xin Wu,Jing Yao,Adil Khan,Manuel Mazzara,Salvatore Distefano,Jocelyn Chanussot
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 968-999 被引量:227
标识
DOI:10.1109/jstars.2021.3133021
摘要

Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications because it benefits from the detailed spectral information contained in each pixel. Notably, the complex characteristics, i.e., the nonlinear relation among the captured spectral information and the corresponding object of HSI data, make accurate classification challenging for traditional methods. In the last few years, deep learning (DL) has been substantiated as a powerful feature extractor that effectively addresses the nonlinear problems that appeared in a number of computer vision tasks. This prompts the deployment of DL for HSI classification (HSIC) which revealed good performance. This survey enlists a systematic overview of DL for HSIC and compared state-of-the-art strategies of the said topic. Primarily, we will encapsulate the main challenges of TML for HSIC and then we will acquaint the superiority of DL to address these problems. This article breaks down the state-of-the-art DL frameworks into spectral-features, spatial-features, and together spatial–spectral features to systematically analyze the achievements (future research directions as well) of these frameworks for HSIC. Moreover, we will consider the fact that DL requires a large number of labeled training examples whereas acquiring such a number for HSIC is challenging in terms of time and cost. Therefore, this survey discusses some strategies to improve the generalization performance of DL strategies which can provide some future guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xin发布了新的文献求助10
1秒前
jun儁发布了新的文献求助10
1秒前
zsx发布了新的文献求助10
2秒前
杜兰特发布了新的文献求助10
2秒前
3秒前
highlights完成签到,获得积分10
3秒前
科研通AI5应助小郭采纳,获得10
5秒前
小蘑菇应助满意的世界采纳,获得10
6秒前
李健应助lankbki123采纳,获得10
7秒前
7秒前
Zziiixl完成签到,获得积分10
8秒前
cc发布了新的文献求助10
9秒前
贰鸟应助毛阳采纳,获得10
10秒前
Owen应助Mayday采纳,获得10
10秒前
panyi发布了新的文献求助10
10秒前
哈哈哈完成签到,获得积分10
11秒前
13秒前
17秒前
18秒前
小郭发布了新的文献求助10
19秒前
guaishou发布了新的文献求助10
20秒前
慕青应助善良的冥茗采纳,获得10
22秒前
zsx发布了新的文献求助10
23秒前
研友_84WJXZ完成签到,获得积分10
23秒前
bkagyin应助panyi采纳,获得10
24秒前
24秒前
ZYN发布了新的文献求助10
24秒前
25秒前
jwx应助忘记时间采纳,获得10
26秒前
28秒前
33秒前
36秒前
37秒前
xiyuxiyu完成签到 ,获得积分10
37秒前
xiao发布了新的文献求助20
37秒前
不知终日梦为鱼完成签到,获得积分10
38秒前
精明怜南发布了新的文献求助10
38秒前
Mayday发布了新的文献求助10
39秒前
嗯哼给嗯哼的求助进行了留言
41秒前
superspace发布了新的文献求助10
42秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993032
求助须知:如何正确求助?哪些是违规求助? 3533888
关于积分的说明 11264048
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882974
科研通“疑难数据库(出版商)”最低求助积分说明 809629