Hyperspectral Image Classification—Traditional to Deep Models: A Survey for Future Prospects

高光谱成像 计算机科学 人工智能 上下文图像分类 遥感 计算机视觉 模式识别(心理学) 图像(数学) 地质学
作者
Muhammad Ahmad,Sidrah Shabbir,Swalpa Kumar Roy,Danfeng Hong,Xin Wu,Jing Yao,Adil Khan,Manuel Mazzara,Salvatore Distefano,Jocelyn Chanussot
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 968-999 被引量:227
标识
DOI:10.1109/jstars.2021.3133021
摘要

Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications because it benefits from the detailed spectral information contained in each pixel. Notably, the complex characteristics, i.e., the nonlinear relation among the captured spectral information and the corresponding object of HSI data, make accurate classification challenging for traditional methods. In the last few years, deep learning (DL) has been substantiated as a powerful feature extractor that effectively addresses the nonlinear problems that appeared in a number of computer vision tasks. This prompts the deployment of DL for HSI classification (HSIC) which revealed good performance. This survey enlists a systematic overview of DL for HSIC and compared state-of-the-art strategies of the said topic. Primarily, we will encapsulate the main challenges of TML for HSIC and then we will acquaint the superiority of DL to address these problems. This article breaks down the state-of-the-art DL frameworks into spectral-features, spatial-features, and together spatial–spectral features to systematically analyze the achievements (future research directions as well) of these frameworks for HSIC. Moreover, we will consider the fact that DL requires a large number of labeled training examples whereas acquiring such a number for HSIC is challenging in terms of time and cost. Therefore, this survey discusses some strategies to improve the generalization performance of DL strategies which can provide some future guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
寒冷荠完成签到,获得积分10
3秒前
3秒前
碧蓝世界完成签到 ,获得积分10
3秒前
Singularity应助神内小大夫采纳,获得10
4秒前
5秒前
茸茸茸完成签到,获得积分10
5秒前
汉堡包应助飞云采纳,获得10
7秒前
blue2021发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
11秒前
hu发布了新的文献求助10
11秒前
11秒前
guojingjing发布了新的文献求助10
12秒前
13秒前
耍酷花卷完成签到,获得积分10
13秒前
Serein发布了新的文献求助10
15秒前
敏酱12138完成签到,获得积分10
15秒前
16秒前
WY完成签到 ,获得积分10
16秒前
lalala发布了新的文献求助10
18秒前
小马甲应助忧郁依霜采纳,获得10
18秒前
牛马刘发布了新的文献求助10
19秒前
shihshi发布了新的文献求助10
19秒前
SciGPT应助guojingjing采纳,获得10
21秒前
22秒前
灰灰完成签到 ,获得积分10
22秒前
冷风完成签到 ,获得积分10
24秒前
Rain发布了新的文献求助10
25秒前
26秒前
泓竹完成签到,获得积分10
26秒前
26秒前
26秒前
27秒前
diu应助edison_mei采纳,获得10
27秒前
hautzhl完成签到,获得积分10
27秒前
脑洞疼应助pu66采纳,获得10
28秒前
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248438
求助须知:如何正确求助?哪些是违规求助? 2891833
关于积分的说明 8268874
捐赠科研通 2559834
什么是DOI,文献DOI怎么找? 1388717
科研通“疑难数据库(出版商)”最低求助积分说明 650798
邀请新用户注册赠送积分活动 627775