计算机科学
概率逻辑
样品(材料)
马尔可夫链
扩散
采样(信号处理)
计算
插值(计算机图形学)
马尔可夫过程
算法
降噪
过程(计算)
扩散过程
人工智能
机器学习
图像(数学)
数学
计算机视觉
统计
滤波器(信号处理)
化学
物理
色谱法
热力学
操作系统
知识管理
创新扩散
作者
Jiaming Song,Chenlin Meng,Stefano Ermon
出处
期刊:Cornell University - arXiv
日期:2020-01-01
被引量:911
标识
DOI:10.48550/arxiv.2010.02502
摘要
Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples $10 \times$ to $50 \times$ faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.
科研通智能强力驱动
Strongly Powered by AbleSci AI