Rapid analysis of Baijiu volatile compounds fingerprint for their aroma and regional origin authenticity assessment

芳香 电子鼻 化学 指纹(计算) 色谱法 固相微萃取 质谱法 气相色谱-质谱法 食品科学 人工智能 计算机科学
作者
Xi He,Huang Yangming,Elżbieta Górska‐Horczyczak,Agnieszka Wierzbicka,Henryk H. Jeleń
出处
期刊:Food Chemistry [Elsevier]
卷期号:337: 128002-128002 被引量:87
标识
DOI:10.1016/j.foodchem.2020.128002
摘要

Solid-phase microextraction – mass spectrometry (SPME-MS) and fast gas chromatography based electronic nose (GC-E-Nose) were used and compared for their suitability to distinguish Baijiu of various aroma types and geographical origin. Baijiu is a traditional Chinese distilled spirit produced with complex consortia of microorganisms, which results in very complex aroma compounds profiles. A total of 65 Baijiu samples representing 6 aromas were investigated. Strong aroma types from 3 regions were examined for their origin. Data acquired on two analytical systems were processed using uniform statistical approach. Data were pre-processed for multi-classification (OPLS-DA) models as well as for binary classification (PLS-DA) ones. Aroma and regional classification performed using OPLS-DA indicated that the approach based on SPME-MS had better fitness and prediction ability compared with GC-E-Nose. The total correct classification rate for SPME-MS was 94.44% for aroma and 100% for region, whereas for GC-E-Nose these values were 91.53% and 93.94% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dddd发布了新的文献求助10
刚刚
hahah发布了新的文献求助10
1秒前
yep完成签到,获得积分10
1秒前
gguc发布了新的文献求助10
1秒前
大个应助yyy采纳,获得10
2秒前
你爹完成签到,获得积分10
2秒前
鳗鱼鞋垫完成签到 ,获得积分10
2秒前
dong发布了新的文献求助30
2秒前
3秒前
Lin发布了新的文献求助10
3秒前
Ll发布了新的文献求助50
3秒前
4秒前
晚风发布了新的文献求助10
4秒前
zjuroc发布了新的文献求助20
5秒前
坦率的松发布了新的文献求助10
5秒前
xiaokai完成签到,获得积分10
5秒前
5秒前
5秒前
Czy完成签到,获得积分10
5秒前
6秒前
小满完成签到,获得积分10
6秒前
文忉嫣完成签到,获得积分10
6秒前
6秒前
7秒前
落后秋柳完成签到,获得积分20
7秒前
Akim应助zz采纳,获得10
7秒前
8秒前
三九发布了新的文献求助10
9秒前
科研通AI5应助czq采纳,获得30
9秒前
10秒前
10秒前
10秒前
坦率的松完成签到,获得积分10
10秒前
传奇3应助贤惠的正豪采纳,获得10
11秒前
111发布了新的文献求助10
11秒前
三寒鸦完成签到,获得积分10
11秒前
小木棉发布了新的文献求助10
11秒前
11秒前
少年郎完成签到,获得积分20
12秒前
CipherSage应助123lura采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762