Identification of DNA methylation signatures associated with poor outcome in lower-risk Stage, Size, Grade and Necrosis (SSIGN) score clear cell renal cell cancer

肾透明细胞癌 DNA甲基化 肿瘤科 阶段(地层学) 甲基化 生物标志物 内科学 肾细胞癌 癌症 医学 人口 生物 生物信息学 基因 遗传学 基因表达 古生物学 环境卫生
作者
Louis El Khoury,Shuang Fu,Ryan A. Hlady,Ryan T. Wagner,Liguo Wang,Jeanette E. Eckel‐Passow,Erik P. Castle,Melissa Stanton,R. Houston Thompson,Alexander S. Parker,Thai H. Ho,Keith D. Robertson
出处
期刊:Clinical Epigenetics [Springer Nature]
卷期号:13 (1) 被引量:9
标识
DOI:10.1186/s13148-020-00998-z
摘要

Abstract Background Despite using prognostic algorithms and standard surveillance guidelines, 17% of patients initially diagnosed with low risk clear cell renal cell carcinoma (ccRCC) ultimately relapse and die of recurrent disease, indicating additional molecular parameters are needed for improved prognosis. Results To address the gap in ccRCC prognostication in the lower risk population, we performed a genome-wide analysis for methylation signatures capable of distinguishing recurrent and non-recurrent ccRCCs within the subgroup classified as ‘low risk’ by the Mayo Clinic Stage, Size, Grade, and Necrosis score (SSIGN 0–3). This approach revealed that recurrent patients have globally hypermethylated tumors and differ in methylation significantly at 5929 CpGs. Differentially methylated CpGs (DMCpGs) were enriched in regulatory regions and genes modulating cell growth and invasion. A subset of DMCpGs stratified low SSIGN groups into high and low risk of recurrence in independent data sets, indicating that DNA methylation enhances the prognostic power of the SSIGN score. Conclusions This study reports a global DNA hypermethylation in tumors of recurrent ccRCC patients. Furthermore, DMCpGs were capable of discriminating between aggressive and less aggressive tumors, in addition to SSIGN score. Therefore, DNA methylation presents itself as a potentially strong biomarker to further improve prognostic power in patients with low risk SSIGN score (0–3).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Su完成签到,获得积分10
刚刚
俗丨完成签到,获得积分10
1秒前
科研通AI5应助海底落日采纳,获得30
1秒前
1秒前
CodeCraft应助纯真忆安采纳,获得10
1秒前
顺顺发布了新的文献求助10
1秒前
1秒前
2秒前
nan完成签到,获得积分10
2秒前
2秒前
自信的叫兽完成签到,获得积分10
2秒前
淡然老太完成签到,获得积分10
3秒前
3秒前
哟哟哟完成签到,获得积分10
4秒前
思源应助背后的机器猫采纳,获得10
4秒前
惠惠发布了新的文献求助10
4秒前
AFEUWOS01完成签到,获得积分20
5秒前
冷傲的樱桃完成签到,获得积分10
5秒前
fighting发布了新的文献求助10
5秒前
zxw发布了新的文献求助10
6秒前
赵赵赵完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
唐人雄完成签到,获得积分10
7秒前
xctdyl1992完成签到,获得积分20
7秒前
7秒前
丰知然应助周凡淇采纳,获得10
7秒前
丰知然应助周凡淇采纳,获得10
7秒前
科研小白花完成签到,获得积分20
8秒前
纯真忆安完成签到,获得积分20
8秒前
8秒前
长孙归尘发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
sweetbearm应助通~采纳,获得10
9秒前
9秒前
青木蓝发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794