数学
鞍结分岔
跨临界分岔
分叉
固定点
分岔图
分岔理论
参数空间
应用数学
倍周期分岔
无限周期分岔
分叉理论的生物学应用
离散时间和连续时间
控制理论(社会学)
数学分析
控制(管理)
非线性系统
统计
计算机科学
人工智能
物理
量子力学
作者
Lizhi Fei,Xingwu Chen,Bensan Han
标识
DOI:10.1080/10236198.2021.1876038
摘要
In this paper, a discrete-time predator–prey model with six parameters is investigated. After splitting the parameter space with respect to the number of fixed points, we obtain both transcritical bifurcation surfaces and a Neimark–Sacker bifurcation surface in the six-dimensional parameter space by the normal form method. Then we apply a hybrid control strategy to control the Neimark–Sacker bifurcation so that the positive fixed point of the controlled system is locally asymptotically stable. Numerical simulations are performed to illustrate our theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI