A Machine Learning decision-making tool for extubation in Intensive Care Unit patients

机械通风 机器学习 重症监护室 医学 重症监护 人工智能 支持向量机 人口 决策树 重症监护医学 计算机科学 急诊医学 麻醉 环境卫生
作者
Alexandre Fabregat,Mónica Magret,J. A. Ferré,Antón Vernet,Neus Guasch,Alejandro Rodríguez,Josep Gómez,María Bodí
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:200: 105869-105869 被引量:35
标识
DOI:10.1016/j.cmpb.2020.105869
摘要

Background and Objective: To increase the success rate of invasive mechanical ventilation weaning in critically ill patients using Machine Learning models capable of accurately predicting the outcome of programmed extubations. Methods: The study population was adult patients admitted to the Intensive Care Unit. Target events were programmed extubations, both successful and failed. The working dataset is assembled by combining heterogeneous data including time series from Clinical Information Systems, patient demographics, medical records and respiratory event logs. Three classification learners have been compared: Logistic Discriminant Analysis, Gradient Boosting Method and Support Vector Machines. Standard methodologies have been used for preprocessing, hyperparameter tuning and resampling. Results: The Support Vector Machine classifier is found to correctly predict the outcome of an extubation with a 94.6% accuracy. Contrary to current decision-making criteria for extubation based on Spontaneous Breathing Trials, the classifier predictors only require monitor data, medical entry records and patient demographics. Conclusions: Machine Learning-based tools have been found to accurately predict the extubation outcome in critical patients with invasive mechanical ventilation. The use of this important predictive capability to assess the extubation decision could potentially reduce the rate of extubation failure, currently at 9%. With about 40% of critically ill patients eventually receiving invasive mechanical ventilation during their stay and given the serious potential complications associated to reintubation, the excellent predictive ability of the model presented here suggests that Machine Learning techniques could significantly improve the clinical outcomes of critical patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭志强发布了新的文献求助10
刚刚
2秒前
2秒前
酷波er应助想人陪的以云采纳,获得10
2秒前
3秒前
rrr完成签到,获得积分20
4秒前
李嘿嘿完成签到,获得积分10
6秒前
7秒前
7秒前
大方的觅海完成签到,获得积分10
8秒前
富婆完成签到,获得积分10
9秒前
Vince完成签到 ,获得积分10
10秒前
在水一方应助张一诺021222采纳,获得10
11秒前
Mengzhen Du完成签到,获得积分10
11秒前
czcz发布了新的文献求助10
11秒前
英俊的铭应助博弈春秋采纳,获得10
12秒前
13秒前
15秒前
wangyao_yolanda完成签到,获得积分20
15秒前
18秒前
zyc完成签到,获得积分10
18秒前
深情安青应助咕噜噜采纳,获得10
19秒前
19秒前
19秒前
geopotter完成签到,获得积分10
19秒前
Yinging发布了新的文献求助10
20秒前
无心的青槐完成签到 ,获得积分10
22秒前
123456qi完成签到,获得积分10
22秒前
gaoyang123完成签到 ,获得积分10
23秒前
25秒前
26秒前
27秒前
29秒前
陈陈发布了新的文献求助50
30秒前
想人陪的以云完成签到,获得积分10
31秒前
博弈春秋发布了新的文献求助10
31秒前
32秒前
咕噜噜发布了新的文献求助10
33秒前
巩琦完成签到,获得积分10
36秒前
Creamai发布了新的文献求助10
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137545
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787226
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300083
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023