亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Machine Learning decision-making tool for extubation in Intensive Care Unit patients

机械通风 机器学习 重症监护室 医学 重症监护 人工智能 支持向量机 人口 决策树 重症监护医学 计算机科学 急诊医学 麻醉 环境卫生
作者
Alexandre Fabregat,Mónica Magret,J. A. Ferré,Antón Vernet,Neus Guasch,Alejandro Rodríguez,Josep Gómez,María Bodí
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:200: 105869-105869 被引量:35
标识
DOI:10.1016/j.cmpb.2020.105869
摘要

Background and Objective: To increase the success rate of invasive mechanical ventilation weaning in critically ill patients using Machine Learning models capable of accurately predicting the outcome of programmed extubations. Methods: The study population was adult patients admitted to the Intensive Care Unit. Target events were programmed extubations, both successful and failed. The working dataset is assembled by combining heterogeneous data including time series from Clinical Information Systems, patient demographics, medical records and respiratory event logs. Three classification learners have been compared: Logistic Discriminant Analysis, Gradient Boosting Method and Support Vector Machines. Standard methodologies have been used for preprocessing, hyperparameter tuning and resampling. Results: The Support Vector Machine classifier is found to correctly predict the outcome of an extubation with a 94.6% accuracy. Contrary to current decision-making criteria for extubation based on Spontaneous Breathing Trials, the classifier predictors only require monitor data, medical entry records and patient demographics. Conclusions: Machine Learning-based tools have been found to accurately predict the extubation outcome in critical patients with invasive mechanical ventilation. The use of this important predictive capability to assess the extubation decision could potentially reduce the rate of extubation failure, currently at 9%. With about 40% of critically ill patients eventually receiving invasive mechanical ventilation during their stay and given the serious potential complications associated to reintubation, the excellent predictive ability of the model presented here suggests that Machine Learning techniques could significantly improve the clinical outcomes of critical patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chelly发布了新的文献求助10
17秒前
Orange应助读书的时候采纳,获得10
28秒前
科研通AI2S应助给好评采纳,获得10
34秒前
大模型应助Nichols采纳,获得10
35秒前
41秒前
给好评发布了新的文献求助10
46秒前
顾矜应助读书的时候采纳,获得10
59秒前
1分钟前
1分钟前
1分钟前
我爱学习完成签到,获得积分10
1分钟前
1分钟前
小璐完成签到,获得积分20
1分钟前
我爱学习发布了新的文献求助10
1分钟前
Linda发布了新的文献求助10
1分钟前
1分钟前
kangwen发布了新的文献求助10
1分钟前
1分钟前
顾矜应助一见喜采纳,获得10
1分钟前
Linda完成签到,获得积分10
1分钟前
1分钟前
科研通AI6.1应助lemon采纳,获得10
1分钟前
1分钟前
一见喜发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
风吹麦田应助kangwen采纳,获得30
2分钟前
2分钟前
Lan完成签到 ,获得积分10
2分钟前
lemon完成签到,获得积分10
2分钟前
在水一方应助小璐采纳,获得10
2分钟前
lemon发布了新的文献求助10
2分钟前
充电宝应助伊祁夜明采纳,获得10
2分钟前
3分钟前
西早完成签到 ,获得积分10
3分钟前
Nichols发布了新的文献求助20
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731973
求助须知:如何正确求助?哪些是违规求助? 5335177
关于积分的说明 15321878
捐赠科研通 4877749
什么是DOI,文献DOI怎么找? 2620617
邀请新用户注册赠送积分活动 1569892
关于科研通互助平台的介绍 1526410