A Machine Learning decision-making tool for extubation in Intensive Care Unit patients

机械通风 机器学习 重症监护室 医学 重症监护 人工智能 支持向量机 人口 决策树 重症监护医学 计算机科学 急诊医学 麻醉 环境卫生
作者
Alexandre Fabregat,Mónica Magret,J. A. Ferré,Antón Vernet,Neus Guasch,Alejandro Rodríguez,Josep Gómez,María Bodí
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:200: 105869-105869 被引量:35
标识
DOI:10.1016/j.cmpb.2020.105869
摘要

Background and Objective: To increase the success rate of invasive mechanical ventilation weaning in critically ill patients using Machine Learning models capable of accurately predicting the outcome of programmed extubations. Methods: The study population was adult patients admitted to the Intensive Care Unit. Target events were programmed extubations, both successful and failed. The working dataset is assembled by combining heterogeneous data including time series from Clinical Information Systems, patient demographics, medical records and respiratory event logs. Three classification learners have been compared: Logistic Discriminant Analysis, Gradient Boosting Method and Support Vector Machines. Standard methodologies have been used for preprocessing, hyperparameter tuning and resampling. Results: The Support Vector Machine classifier is found to correctly predict the outcome of an extubation with a 94.6% accuracy. Contrary to current decision-making criteria for extubation based on Spontaneous Breathing Trials, the classifier predictors only require monitor data, medical entry records and patient demographics. Conclusions: Machine Learning-based tools have been found to accurately predict the extubation outcome in critical patients with invasive mechanical ventilation. The use of this important predictive capability to assess the extubation decision could potentially reduce the rate of extubation failure, currently at 9%. With about 40% of critically ill patients eventually receiving invasive mechanical ventilation during their stay and given the serious potential complications associated to reintubation, the excellent predictive ability of the model presented here suggests that Machine Learning techniques could significantly improve the clinical outcomes of critical patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
困困羊完成签到 ,获得积分10
刚刚
LN给LN的求助进行了留言
1秒前
Yixuan_Zou完成签到,获得积分10
2秒前
3秒前
神内小天使完成签到,获得积分10
4秒前
Yixuan_Zou发布了新的文献求助10
5秒前
6秒前
7秒前
深情安青应助朴素的松采纳,获得10
9秒前
善学以致用应助伯言采纳,获得10
9秒前
张玮发布了新的文献求助10
11秒前
ri_290完成签到,获得积分10
13秒前
shiori发布了新的文献求助10
13秒前
科研通AI6应助Echo采纳,获得10
13秒前
20秒前
打打应助朴素的松采纳,获得10
20秒前
伯言发布了新的文献求助10
23秒前
NexusExplorer应助Lialilico采纳,获得10
24秒前
风格完成签到,获得积分10
25秒前
kingwhitewing发布了新的文献求助10
26秒前
27秒前
Aron发布了新的文献求助10
27秒前
32秒前
32秒前
烟花应助yang采纳,获得10
33秒前
Owen应助inter采纳,获得10
33秒前
lynn发布了新的文献求助10
37秒前
FLyu发布了新的文献求助10
37秒前
38秒前
小蘑菇应助土豆土豆采纳,获得10
38秒前
niNe3YUE应助研友_Ljqal8采纳,获得10
39秒前
长情的海亦完成签到,获得积分10
41秒前
12发布了新的文献求助100
42秒前
43秒前
shiori完成签到,获得积分10
43秒前
隐形曼青应助Jodie采纳,获得10
45秒前
47秒前
郭6666发布了新的文献求助10
49秒前
FLyu完成签到,获得积分10
49秒前
耶椰发布了新的文献求助10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550