A Machine Learning decision-making tool for extubation in Intensive Care Unit patients

机械通风 机器学习 重症监护室 医学 重症监护 人工智能 支持向量机 人口 决策树 重症监护医学 计算机科学 急诊医学 麻醉 环境卫生
作者
Alexandre Fabregat,Mónica Magret,J. A. Ferré,Antón Vernet,Neus Guasch,Alejandro Rodríguez,Josep Gómez,María Bodí
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:200: 105869-105869 被引量:35
标识
DOI:10.1016/j.cmpb.2020.105869
摘要

Background and Objective: To increase the success rate of invasive mechanical ventilation weaning in critically ill patients using Machine Learning models capable of accurately predicting the outcome of programmed extubations. Methods: The study population was adult patients admitted to the Intensive Care Unit. Target events were programmed extubations, both successful and failed. The working dataset is assembled by combining heterogeneous data including time series from Clinical Information Systems, patient demographics, medical records and respiratory event logs. Three classification learners have been compared: Logistic Discriminant Analysis, Gradient Boosting Method and Support Vector Machines. Standard methodologies have been used for preprocessing, hyperparameter tuning and resampling. Results: The Support Vector Machine classifier is found to correctly predict the outcome of an extubation with a 94.6% accuracy. Contrary to current decision-making criteria for extubation based on Spontaneous Breathing Trials, the classifier predictors only require monitor data, medical entry records and patient demographics. Conclusions: Machine Learning-based tools have been found to accurately predict the extubation outcome in critical patients with invasive mechanical ventilation. The use of this important predictive capability to assess the extubation decision could potentially reduce the rate of extubation failure, currently at 9%. With about 40% of critically ill patients eventually receiving invasive mechanical ventilation during their stay and given the serious potential complications associated to reintubation, the excellent predictive ability of the model presented here suggests that Machine Learning techniques could significantly improve the clinical outcomes of critical patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明的云完成签到 ,获得积分10
1秒前
NexusExplorer应助活泼的便当采纳,获得10
1秒前
fafafa发布了新的文献求助10
2秒前
lzx关闭了lzx文献求助
3秒前
asdf发布了新的文献求助10
3秒前
努力的淼淼完成签到 ,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
无私的芹应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
aslink发布了新的文献求助10
8秒前
无私的芹应助科研通管家采纳,获得10
8秒前
8秒前
无私的芹应助科研通管家采纳,获得10
8秒前
8秒前
bubble嘞完成签到 ,获得积分10
8秒前
orixero应助樱香音子采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
8秒前
CAOHOU应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
liaodongjun应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
9秒前
linshunan完成签到 ,获得积分10
9秒前
完美世界应助调皮的樱采纳,获得10
9秒前
11秒前
Akim应助YDX采纳,获得10
11秒前
但大图完成签到 ,获得积分10
12秒前
梦槐发布了新的文献求助10
13秒前
杜不腾发布了新的文献求助10
15秒前
浅言完成签到 ,获得积分10
16秒前
16秒前
地瓜完成签到,获得积分10
16秒前
cazer_Wang关注了科研通微信公众号
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959519
求助须知:如何正确求助?哪些是违规求助? 3505756
关于积分的说明 11125718
捐赠科研通 3237616
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802902