基因
调节顺序
生物
基因表达调控
编码区
基因表达
计算生物学
遗传学
调节基因
基因调控网络
信使核糖核酸
DNA
作者
Jan Zrimec,Christoph S Börlin,Filip Buric,Azam Sheikh Muhammad,Rhongzen Chen,Verena Siewers,Vilhelm Verendel,Jens Nielsen,Mats Töpel,Aleksej Zelezniak
标识
DOI:10.1038/s41467-020-19921-4
摘要
Understanding the genetic regulatory code governing gene expression is an important challenge in molecular biology. However, how individual coding and non-coding regions of the gene regulatory structure interact and contribute to mRNA expression levels remains unclear. Here we apply deep learning on over 20,000 mRNA datasets to examine the genetic regulatory code controlling mRNA abundance in 7 model organisms ranging from bacteria to Human. In all organisms, we can predict mRNA abundance directly from DNA sequence, with up to 82% of the variation of transcript levels encoded in the gene regulatory structure. By searching for DNA regulatory motifs across the gene regulatory structure, we discover that motif interactions could explain the whole dynamic range of mRNA levels. Co-evolution across coding and non-coding regions suggests that it is not single motifs or regions, but the entire gene regulatory structure and specific combination of regulatory elements that define gene expression levels.
科研通智能强力驱动
Strongly Powered by AbleSci AI